我还没见到关于这个命令的说明文档,因此这里对此作一个总结,可以补充进 "man ntpq" man page 中。更多的细节见这里 “ntpq – 标准 NTP 请求程序”(原作者),和其他关于 man ntpq 的例子.
NTP是一个设计用于通过udp网络 (WAN或者LAN) 来同步计算机时钟的协议。引用Wikipedia – NTP">
当前位置:恩施知识网 > 电脑百科 > 正文

网络时间的那些事及ntpq详解

Gentoo(也许其他发行版也是?)中"ntpq -p" 的 man page只有简短的描述:“打印出该服务器已知的节点列表和它们的状态概要信息。”
我还没见到关于这个命令的说明文档,因此这里对此作一个总结,可以补充进 "man ntpq" man page 中。更多的细节见这里 “ntpq – 标准 NTP 请求程序”(原作者),和其他关于 man ntpq 的例子.
NTP是一个设计用于通过udp网络 (WAN或者LAN) 来同步计算机时钟的协议。引用Wikipedia – NTP

Gentoo(也许其他发行版也是?)中"ntpq -p" 的 man page只有简短的描述:“打印出该服务器已知的节点列表和它们的状态概要信息。”

我还没见到关于这个命令的说明文档,因此这里对此作一个总结,可以补充进 "man ntpq" man page 中。更多的细节见这里 “ntpq – 标准 NTP 请求程序”(原作者),和其他关于 man ntpq 的例子.

NTP是一个设计用于通过udp网络 (WAN或者LAN) 来同步计算机时钟的协议。引用Wikipedia – NTP:

网络时间协议(英语:Network Time Protocol,NTP)一种协议和软件实现,用于通过使用有网络延迟的报文交换网络同步计算机系统间的时钟。最初由美国特拉华大学的 David L. Mills 设计,现在仍然由他和志愿者小组维护,它于 1985 年之前开始使用,是因特网中最老的协议之一。

想了解更多有关时间和 NTP 协议的知识,可以参考 “The NTP FAQ, Time, what Time?”和RFCs for NTP。早期的“Network Time Protocol (Version 3) RFC” (txt, orpdf, Appendix E, The NTP Timescale and its Chronometry, p70) 包含了对过去 5000 年我们的计时系统的变化和关系的有趣解释。维基百科的文章Time和Calendar提供了更宏观的视角。

命令 "ntpq -q" 输出下面这样的一个表:

remote refid st t when poll reach delay offset jitter============================================================================== LOCAL(0) .LOCL. 10 l 96h 64 0 0.000 0.000 0.000*ns2.example.com 10.193.2.20 2 u 936 1024 377 31.234 3.353 3.096更多细节表头remote– 用于同步的远程节点或服务器。“LOCAL”表示本机 (当没有远程服务器可用时会出现)refid– 远程的服务器进行同步的更高一级服务器st– 远程节点或服务器的Stratum(级别,NTP 时间同步是分层的)t– 类型 (u:unicast(单播)或manycast(选播)客户端, b:broadcast(广播)或multicast(多播)客户端, l: 本地时钟, s: 对称节点(用于备份), A: 选播服务器, B: 广播服务器, M: 多播服务器, 参见“Automatic Server Discovery“)when– 最后一次同步到现在的时间 (默认单位为秒, “h”表示小时,“d”表示天)poll– 同步的频率:rfc5905建议在 NTPv4 中这个值的范围在 4 (16秒) 至 17 (36小时) 之间(即2的指数次秒),然而观察发现这个值的实际大小在一个小的多的范围内 :64 (26)秒 至 1024 (210)秒reach– 一个8位的左移移位寄存器值,用来测试能否和服务器连接,每成功连接一次它的值就会增加,以8 进制显示delay– 从本地到远程节点或服务器通信的往返时间(毫秒)offset– 主机与远程节点或服务器时间源的时间偏移量,offset 越接近于0,主机和 NTP 服务器的时间越接近(以方均根表示,单位为毫秒)jitter– 与远程节点同步的时间源的平均偏差(多个时间样本中的 offset 的偏差,单位是毫秒),这个数值的绝对值越小,主机的时间就越精确字段的统计代码

表中第一个字符(统计代码)是状态标识(参见 Peer Status Word),包含 " ","x","-","#"," ","*","o":

" " – 无状态,表示: 没有远程通信的主机"LOCAL" 即本机(未被使用的)高层级服务器远程主机使用的这台机器作为同步服务器“x” – 已不再使用“-” – 已不再使用“#” – 良好的远程节点或服务器但是未被使用 (不在按同步距离排序的前六个节点中,作为备用节点使用)“ ” – 良好的且优先使用的远程节点或服务器(包含在组合算法中)“*” – 当前作为优先主同步对象的远程节点或服务器“o” – PPS 节点 (当优先节点是有效时)。实际的系统同步是源于秒脉冲信号(pulse-per-second,PPS),可能通过PPS 时钟驱动或者通过内核接口。refid

refid有下面这些状态值

一个IP地址 – 远程节点或服务器的 IP 地址.LOCL.– 本机 (当没有远程节点或服务器可用时).PPS.– 时间标准中的“Pulse Per Second”(秒脉冲).IRIG.–Inter-Range Instrumentation Group时间码.ACTS.– 美国NIST 标准时间电话调制器.NIST.–美国 NIST 标准时间电话调制器.PTB.– 德国PTB时间标准电话调制器.USNO.– 美国USNO 标准时间电话调制器.CHU.–CHU(HF, Ottawa, ON, Canada) 标准时间无线电接收器.DCFa.–DCF77(LF, Mainflingen, Germany) 标准时间无线电接收器.HBG.–HBG(LF Prangins, Switzerland) 标准时间无线电接收器.JJY.–JJY(LF Fukushima, Japan) 标准时间无线电接收器.LORC.–LORAN-C station (MF) 标准时间无线电接收器,注:不再可用(被eLORAN废弃).MSF.–MSF(LF, Anthorn, Great Britain) 标准时间无线电接收器.TDF.–TDF(MF, Allouis, France)标准时间无线电接收器.WWV.–WWV(HF, Ft. Collins, CO, America) 标准时间无线电接收器.WWVB.–WWVB(LF, Ft. Collins, CO, America) 标准时间无线电接收器.WWVH.–WWVH(HF, Kauai, HI, America) 标准时间无线电接收器.GOES.– 美国静止环境观测卫星;.GPS.– 美国GPS;.GAL.–伽利略定位系统欧洲GNSS;.ACST.– 选播服务器.AUTH.– 认证错误.AUTO.– Autokey (NTP 的一种认证机制)顺序错误.BCST.– 广播服务器.CRYPT.– Autokey 协议错误.DENY.– 服务器拒绝访问;.INIT.– 关联初始化.MCST.– 多播服务器.RATE.– (轮询) 速率超出限定.TIME.– 关联超时.STEP.– 间隔时长改变,偏移量比危险阈值小(1000ms) 比间隔时间 (125ms)大操作要点

一个时间服务器只会报告时间信息而不会从客户端更新时间(单向更新),而一个节点可以更新其他同级节点的时间,结合出一个彼此同意的时间(双向更新)。

除非使用 iburst 选项,客户端通常需要花几分钟来和服务器同步。如果客户端在启动时时间与 NTP 服务器的时间差大于 1000 秒,守护进程会退出并在系统日志中记录,让操作者手动设置时间差小于 1000 秒后再重新启动。如果时间差小于 1000 秒,但是大于 128 秒,会自动矫正间隔,并自动重启守护进程。

当第一次启动时,时间频率文件(通常是 ntp.drift 文件,记录时间偏移)不存在,守护进程进入一个特殊模式来矫正频率。当时钟不符合规范时这会需要 900 秒。当校正完成后,守护进程创建时间频率文件进入普通模式,并分步校正剩余的偏差。

NTP 0 层(Stratum 0 )的设备如原子钟(铯,铷),GPS 时钟或者其他标准时间的无线电时钟为 1 层(Stratum 1)的时间服务器提供时间信号。NTP 只报告UTC时间(统一协调时,Coordinated Universal Time)。客户端程序使用时区从 UTC 导出本地时间。

NTP 协议是高精度的,使用的精度小于纳秒(2的 -32 次方)。主机的时间精度和其他参数(受硬件和操作系统限制)使用命令 “ntpq -c rl” 查看(参见 rfc1305通用变量和rfc5905)。

“ntpq -c rl”输出参数precision为四舍五入值,且为 2 的幂数。因此精度为 2precision(秒)rootdelay– 与同步网络中主同步服务器的总往返延时。注意这个值可以是正数或者负数,取决于时钟的精度。rootdisp– 相对于同步网络中主同步服务器的偏差(秒)tc– NTP 算法PLL(phase locked loop,锁相环路) 或FLL(frequency locked loop,锁频回路) 时间常量mintc– NTP 算法 PLL/FLL 最小时间常亮或“最快响应offset– 由结合算法得出的系统时钟偏移量(毫秒)frequency– 系统时钟频率sys_jitter– 由结合算法得出的系统时钟平均偏差(毫秒)clk_jitter– 硬件时钟平均偏差(毫秒)clk_wander– 硬件时钟偏移(PPM– 百分之一)

Jitter (也叫 timing jitter) 表示短期变化大于10HZ 的频率, wander 表示长期变化大于10HZ 的频率 (Stability 表示系统的频率随时间的变化,和 aging, drift, trends 等是同义词)

操作要点(续)

NTP 软件维护一系列连续更新的频率变化的校正值。对于设置正确的稳定系统,在非拥塞的网络中,现代硬件的 NTP 时钟同步通常与 UTC 标准时间相差在毫秒内。(在千兆 LAN 网络中可以达到何种精度?)

对于 UTC 时间,闰秒 leap second 可以每两年插入一次用于同步地球自传的变化。注意本地时间为夏令时时时间会有一小时的变化。在重同步之前客户端设备会使用独立的 UTC 时间,除非客户端使用了偏移校准。

闰秒发生时,会对当天时间增加或减少一秒。闰秒的调整在 UTC 时间当天的最后一秒。如果增加一秒,UTC 时间会出现 23:59:60。即 23:59:59 到 0:00:00 之间实际上需要 2 秒钟。如果减少一秒,时间会从 23:59:58 跳至 0:00:00 。另见 The Kernel Discipline.

那么… 间隔阈值(step threshold)的真实值是多少: 125ms 还是 128ms? PLL/FLL tc 的单位是什么 (log2 s? ms?)?在非拥塞的千兆 LAN 中时间节点间的精度能达到多少?

感谢 Camilo M 和 Chris B的评论。 欢迎校正错误和更多细节的探讨。

谢谢 Martin

附录另见其他

SNTP (Simple Network Time Protocol, RFC 4330,简单网络协议)基本上也是NTP,但是少了一些基于RFC 1305实现的 NTP 的一些不再需要的内部算法。

Win32 时间 Windows Time Service是 SNTP 的非标准实现,没有精度的保证,并假设精度几乎有 1-2 秒的范围。(因为没有系统时间变化校正)

还有一个PTP (IEEE 1588)Precision Time Protocol(精准时间协议)。见维基百科:Precision Time Protocol。软件程序为PTPd。虫咬的功能是这是一个LAN高精度主从同步系统,精度在毫秒级,使用International Atomic Time(TAI,monotonic,无闰秒)。数据报时间戳需要在网卡中启用。支持 PTP 的网络会对数据报记录时间戳以减少交换机路由器的影响。也可以在不记录时间戳的网络中使用 PTP 但可能应为时间偏差太大而无法同步。因此使用这个需要对网络进行设置。

更老的时间同步协议

作者:Martin L 译者:Liao校对:wxy

本文由 LCTT原创翻译,Linux中国荣誉推出

本文由 LCTT 原创翻译,Linux中国首发。也想加入译者行列,为开源做一些自己的贡献么?欢迎加入LCTT!

翻译工作和译文发表仅用于学习和交流目的,翻译工作遵照CC 协议规定,如果我们的工作有侵犯到您的权益,请及时联系我们。

欢迎遵照CC 协议规定转载,敬请在正文中标注并保留原文/译文链接和作者/译者等信息。

网络时间的那些事及ntpq详解

【NTP】NTP(Network Time Protocol)配置详解

设置NTP服务器不难,但是NTP本身是一个很复杂的协议. 这里我们只是简要地介绍一下实践方法。

如果有人问你说现在几点? 你看了看表回答他说晚上8点了. 这样回答看上去没有什么问题,但是如果问你的这个人在欧洲的话那么你的回答就会让他很疑惑,因为他那里还太阳当空呢。

这里就有产生了一个如何定义时间的问题. 因为在地球环绕太阳旋转的24个小时中,世界各地日出日落的时间是不一样的.所以我们才有划分时区(timezone) 的必要,也就是把全球划分成24个不同的时区. 所以我们可以把时间的定义理解为一个时间的值加上所在地的时区(注意这个所在地可以精确到城市)。

地理课上我们都学过格林威治时间(GMT), 它也就是0时区时间. 但是我们在计算机中经常看到的是UTC. 它是Coordinated Universal Time的简写. 虽然可以认为UTC和GMT的值相等(误差相当之小),但是UTC已经被认定为是国际标准,所以我们都应该遵守标准只使用UTC。

那么假如现在中国当地的时间是晚上8点的话,我们可以有下面两种表示方式:

20:00 CST

12:00 UTC

这里的CST是Chinese Standard Time,也就是我们通常所说的北京时间了. 因为中国处在UTC+8时区,依次类推那么也就是12:00 UTC了。

为什么要说这些呢?

第一,不管通过任何渠道我们想要同步系统的时间,通常提供方只会给出UTC+0的时间值而不会提供时区(因为它不知道你在哪里).所以当我们设置系统时间的时候,设置好时区是首先要做的工作。

第二,很多国家都有夏令时,那就是在一年当中的某一天时钟拨快一小时(比如从UTC+8一下变成UTC+9了),那么同理到时候还要再拨慢回来.如果我们设置了正确的时区,当需要改变时间的时候系统就会自动替我们调整。
现在我们就来看一下如何在Linux下设置时区,也就是time zone
在Linux下glibc提供了我们事先编译好的许多timezone文件, 他们就放在/usr/share/zoneinfo这个目录下,这里基本涵盖了大部分的国家和城市

# ls -F /usr/share/zoneinfo

在这里面我们就可以找到自己所在城市的time zone文件. 那么如果我们想查看对于每个time zone当前的时间我们可以用zdump命令

# zdump Shanghai

Shanghai Mon Apr 23 17:54:12 2018 Shanghai

那么我们又怎么来告诉系统我们所在time zone是哪个呢?

方法有很多,这里举出两种:

第一个就是修改/etc/localtime这个文件,这个文件定义了我么所在的local time zone.

我们可以在/usr/share/zoneinfo下找到我们的time zone文件然后软链接去到/etc/localtimezone

# ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

第二种方法也就设置TZ环境变量的值. 许多程序和命令都会用到这个变量的值. TZ的值可以有多种格式,最简单的设置方法就是使用tzselect命令

# tzselect

# TZ=Asia/Shanghai; export TZ

You can make this change permanent for yourself by appending the line

TZ=Asia/Shanghai; export TZ

to the file .profile in your home directory; then log out and log in again.

Here is that TZ value again, this time on standard output so that you

can use the /usr/bin/tzselect command in shell scripts:

Asia/Shanghai

通过这两个例子我们也可以发现TZ变量的值会override /etc/localtime. 也就是说当TZ变量没有定义的时候系统才使用/etc/localtime来确定time zone. 所以你想永久修改time zone的话那么可以把TZ变量的设置写入/etc/profile里!

说道设置时间这里还要明确另外一个概念就是在一台计算机上我们有两个时钟:

一个称之为硬件时间时钟(RTC),还有一个称之为系统时钟(System Clock)

硬件时钟是指嵌在主板上的特殊的电路, 它的存在就是平时我们关机之后还可以计算时间的原因

系统时钟就是操作系统的kernel所用来计算时间的时钟. 它从1970年1月1日00:00:00 UTC时间到目前为止秒数总和的值

在Linux下系统时间在开机的时候会和硬件时间同步(synchronization),之后也就各自独立运行了

那么既然两个时钟独自运行,那么时间久了必然就会产生误差了,下面我们来看一个例子:

# date

Fri Jul 6 00:27:13 BST 2007

# hwclock --show

Fri 06 Jul 2007 12:27:17 AM BST -0.968931 seconds

通过hwclock --show 命令我们可以查看机器上的硬件时间(always in local time zone), 我们可以看到它和系统时间还是有一定的误差的, 那么我们就需要把他们同步。
如果我们想要把硬件时间设置成系统时间我们可以运行以下命令

# hwclock --hctosys

反之,我们也可以把系统时间设置成硬件时间

# hwclock --systohc

那么如果想设置硬件时间我们可以开机的时候在BIOS里设定.也可以用hwclock命令

# hwclock --set --date="mm/dd/yy hh:mm:ss"

如果想要修改系统时间那么用date命令就最简单了

# date -s "dd/mm/yyyy hh:mm:ss"
现在我们知道了如何设置系统和硬件的时间. 但问题是如果这两个时间都不准确了怎么办?

那么我们就需要在互联网上找到一个可以提供我们准确时间的服务器然后通过一种协议来同步我们的系统时间,那么这个协议就是NTP了. 注意接下去我们所要说的同步就都是指系统时间和网络服务器之间的同步了!

其实这个标题应该改为设置"NTP Relay Server"前的准备更加合适. 因为不论我们的计算机配置多好运行时间久了都会产生误差,所以不足以给互联网上的其他服务器做NTP Server. 真正能够精确地测算时间的还是原子钟. 但由于原子钟十分的昂贵,只有少部分组织拥有, 他们连接到计算机之后就成了一台真正的NTP Server. 而我们所要做的就是连接到这些服务器上同步我们系统的时间,然后把我们自己的服务器做成NTP Relay Server再给互联网或者是局域网内的用户提供同步服务。

# yum -y install ntp

那么第一步我们就要找到在互联网上给我们提供同步服务的NTP Server

http://www.pool.ntp.org 是NTP的官方网站,在这上面我们可以找到离我们城市最近的NTP Server.

NTP建议我们为了保障时间的准确性,最少找两个个NTP Server

那么比如在英国的话就可以选择下面两个服务器

0.uk.pool.ntp.org

1.uk.pool.ntp.org

它的一般格式都是 number.country.pool.ntp.org

第二步要做的就是在打开NTP服务器之前先和这些服务器做一个同步,使得我们机器的时间尽量接近标准时间.

这里我们可以用ntpdate命令手动更新时间

# ntpdate 0.uk.pool.ntp.org

6 Jul 01:21:49 ntpdate[4528]: step time server 213.222.193.35 offset -38908.575181 sec

# ntpdate 0.pool.ntp.org

6 Jul 01:21:56 ntpdate[4530]: adjust time server 213.222.193.35 offset -0.000065 sec

假如你的时间差的很离谱的话第一次会看到调整的幅度比较大,所以保险起见可以运行两次.那么为什么在打开NTP服务之前先要手动运行同步呢?

1. 因为根据NTP的设置,如果你的系统时间比正确时间要快的话那么NTP是不会帮你调整的,所以要么你把时间设置回去,要么先做一个手动同步

2. 当你的时间设置和NTP服务器的时间相差很大的时候,NTP会花上较长一段时间进行调整.所以手动同步可以减少这段时间
现在我们就来创建NTP的配置文件了, 它就是/etc/ntp.conf. 我们只需要加入上面的NTP Server和一个driftfile就可以了

# vi /etc/ntp.conf

#############################

server 210.72.145.44 #中国国家授时中心的IP

server 0.uk.pool.ntp.org

server 1.uk.pool.ntp.org

fudge127.127.1.0 stratum 0

这行是时间服务器的层次。设为0则为顶级,如果要向别的NTP服务器更新时间,请不要把它设为0

driftfile /var/lib/ntp/ntp.drift

##############################

我们就启动NTP Server,并且设置其在开机后自动运行

#systemctl start ntpd

#systemctl enable ntpd
现在我们已经启动了NTP的服务,但是我们的系统时间到底和服务器同步了没有呢?

为此NTP提供了一个很好的查看工具: ntpq (NTP query)

我建议大家在打开NTP服务器后就可以运行ntpq命令来监测服务器的运行.

这里我们可以使用watch命令来查看一段时间内服务器各项数值的变化

# watch ntpq -p

Every 2.0s: ntpq -p Sat Jul 7 00:41:45 2007

remote refid st t when poll reach delay offset jitter

===========================================================

+193.60.199.75 193.62.22.98 2 u 52 64 377 8.578 10.203 289.032

*mozart.musicbox 192.5.41.41 2 u 54 64 377 19.301 -60.218 292.411
现在我就来解释一下其中的含义

remote: 它指的就是本地机器所连接的远程NTP服务器

refid: 它指的是给远程服务器(e.g. 193.60.199.75)提供时间同步的服务器

st: 远程服务器的层级别(stratum). 由于NTP是层型结构,有顶端的服务器,多层的Relay Server再到客户端. 所以服务器从高到低级别可以设定为1-16. 为了减缓负荷和网络堵塞,原则上应该避免直接连接到级别为1的服务器的.

when: 我个人把它理解为一个计时器用来告诉我们还有多久本地机器就需要和远程服务器进行一次时间同步

poll: 本地机和远程服务器多少时间进行一次同步(单位为秒). 在一开始运行NTP的时候这个poll值会比较小,那样和服务器同步的频率也就增加了,可以尽快调整到正确的时间范围.之后poll值会逐渐增大,同步的频率也就会相应减小

reach: 这是一个八进制值,用来测试能否和服务器连接.每成功连接一次它的值就会增加

delay: 从本地机发送同步要求到服务器的round trip time

offset: 这是个最关键的值, 它告诉了我们本地机和服务器之间的时间差别. offset越接近于0,我们就和服务器的时间越接近

jitter: 这是一个用来做统计的值. 它统计了在特定个连续的连接数里offset的分布情况. 简单地说这个数值的绝对值越小我们和服务器的时间就越精确

那么大家细心的话就会发现两个问题: 第一我们连接的是0.uk.pool.ntp.org为什么和remote server不一样? 第二那个最前面的+和*都是什么意思呢?

第一个问题不难理解,因为NTP提供给我们的是一个cluster server所以每次连接的得到的服务器都有可能是不一样.

同样这也告诉我们了在指定NTP Server的时候应该使用hostname而不是IP

第二个问题和第一个相关,既然有这么多的服务器就是为了在发生问题的时候其他的服务器还可以正常地给我们提供服务.那么如何知道这些服务器的状态呢? 这就是第一个记号会告诉我们的信息

* 它告诉我们远端的服务器已经被确认为我们的主NTP Server,我们系统的时间将由这台机器所提供

+ 它将作为辅助的NTP Server和带有*号的服务器一起为我们提供同步服务. 当*号服务器不可用时它就可以接管

- 远程服务器被 clustering algorithm 认为是不合格的NTP Server

x 远程服务器不可用

了解这些之后我们就可以实时监测我们系统的时间同步状况了!
运行一个NTP Server不需要占用很多的系统资源,所以也不用专门配置独立的服务器,就可以给许多client提供时间同步服务, 但是一些基本的安全设置还是很有必要的

那么这里一个很简单的思路就是第一我们只允许局域网内一部分的用户连接到我们的服务器. 第二个就是这些client不能修改我们服务器上的时间
关于权限设定部分

权限的设定主要以 restrict 这个参数来设定,主要的语法为:

restrict IP地址 mask 子网掩码 参数

其中 IP 可以是IP地址,也可以是 default ,default 就是指所有的IP

参数有以下几个:

ignore :关闭所有的 NTP 联机服务

nomodify:客户端不能更改服务端的时间参数,但是客户端可以通过服务端进行网络校时。

notrust :客户端除非通过认证,否则该客户端来源将被视为不信任子网

noquery :不提供客户端的时间查询

注意:如果参数没有设定,那就表示该 IP (或子网)没有任何限制!

在/etc/ntp.conf文件中我们可以用restrict关键字来配置上面的要求

首先我们对于默认的client拒绝所有的操作

restrict default kod nomodify notrap nopeer noquery

然后允许本机地址一切的操作

restrict 127.0.0.1

最后我们允许局域网内所有client连接到这台服务器同步时间.但是拒绝让他们修改服务器上的时间

restrict 192.168.1.0 mask 255.255.255.0 nomodify

把这三条加入到/etc/ntp.conf中就完成了我们的简单配置. NTP还可以用key来做authentication,这里就不详细介绍了。

做到这里我们已经有了一台自己的Relay Server.如果我们想让局域网内的其他client都进行时间同步的话那么我们就都应该照样再搭建一台Relay Server,然后把所有的client都指向这两台服务器(注意不要把所有的client都指向Internet上的服务器). 只要在client的/etc/ntp.conf加上这你自己的服务器就可以了。

server ntp1.leonard.com

server ntp2.leonard.com
1. 配置文件中的driftfile是什么?

我们每一个system clock的频率都有小小的误差,这个就是为什么机器运行一段时间后会不精确. NTP会自动来监测我们时钟的误差值并予以调整.但问题是这是一个冗长的过程,所以它会把记录下来的误差先写入driftfile.这样即使你重新开机以后之前的计算结果也就不会丢失了。
2. 如何同步硬件时钟?

NTP一般只会同步system clock. 但是如果我们也要同步RTC(hwclock)的话那么只需要把下面的选项打开就可以了

# vi /etc/sysconfig/ntpd

SYNC_HWCLOCK=yes
3、利用crontab让LINUX NTP定时更新时间

注:让linux运行ntpdate更新时间时,linux不能开启NTP服务,否则会提示端口被占用:

# ntpdate 1.rhel.pool.ntp.org

20 May 09:34:14 ntpdate[6747]: the NTP socket is in use, exiting

crontab文件配置简要说明

命令格式的前一部分是对时间的设定,后面一部分是要执行的命令。时间的设定我们有一定的约定,前面五个*号代表五个数字,数字的取值范围和含义如下:

分钟 (0-59)

小时 (0-23)

日期 (1-31)

月份 (1-12)

星期 (0-6)//0代表星期天

除了数字还有几个个特殊的符号就是“*”、“/”和“-”、“,”,“*”代表所有的取值范围内的数字,“/”代表每的意思,“*/5”表示每5个单位,“-”代表从某个数字到某个数字,“,”分开几个离散的数字。

以下举几个例子说明问题:

每天早上6点:

0 6 * * * command

每两个小时:

0 */2 * * * command

晚上11点到早上8点之间每两个小时,早上八点:

0 23-7/2,8 * * * command

每个月的4号和每个礼拜的礼拜一到礼拜三的早上11点:

0 11 4 * 1-3 command

1月1日早上4点:

0 4 1 1 * command
3.3、设置开机自动启动服务

运行setup或其它服务设置工具,将crond服务勾选上

#systemctl enable crond.service
一、LINUX做为客户端自动同步时间

如果想定时进行时间校准,可以使用crond服务来定时执行。

编辑 /etc/crontab 文件

加入下面一行:

30 8 * * * root /usr/sbin/ntpdate 192.168.0.1; /sbin/hwclock -w

#192.168.0.1是NTP服务器的IP地址

然后重启crond服务 service crond restart

这样,每天 8:30 Linux 系统就会自动的进行网络时间校准。
二、WINDOWS 需要打开windows time服务和RPC的二个服务

如果在打开windows time 服务,时报 错误1058,进行下面操作

1.运行 cmd 进入命令行,然后键入

w32tm /register 进行注册

正确的响应为:W32Time 成功注册。

2.如果上一步正确,用 net start "windows time" 或 net start w32time 启动服务。
1、客户端的日期必须要设置正确,不能超出正常时间24小时,不然会因为安全原因被拒绝更新。其次客户端的时区必须要设置好,以确保不会更新成其它时区的时间。

2、fudge127.127.1.0 stratum 10

如果是LINUX做为NTP服务器,stratum(层级)的值不能太大,如果要向上级NTP更新可以设成 2

3、LINUX的NTP服务器必须记得将从上级NTP更新的时间从系统时间写到硬件里去 hwclock --systohc

NTP一般只会同步system clock. 但是如果我们也要同步RTC(hwclock)的话那么只需要把下面的选项打开就可以了

# vi /etc/sysconfig/ntpd

SYNC_HWCLOCK=yes

4、Linux如果开启了NTP服务,则不能手动运行ntpdate更新时间(会报端口被占用),它只能根据/etc/ntp.conf 里server 字段后的服务器地址按一定时间间隔自动向上级NTP服务器更新时间。可以运行命令 ntpstat 查看每次更新间隔如:

# ntpstat

synchronised to NTP server (210.72.145.44) at stratum 2
#本NTP服务器层次为2,已向210.72.145.44 NTP同步过

time correct to within 93 ms

#时间校正到相差93ms之内polling server every 1024 s

#每1024秒会向上级NTP轮询更新一次时间
这些问题主要涉及到NTP的层(stratum)的概念,顶层是1,值为0时表示层数不明,层的值是累加的,比如NTP授时方向是A-〉B-〉C,假设A的stratum值是3,那么B从A获取到时间,B的stratum置为4,C从B获取到时间,C的值被置为5。一般只有整个NTP系统最顶层的服务器stratum才设为1。

NTP同步的方向是从stratum值较小的节点向较大的节点传播,如果某个NTP客户端接收到stratum比自己还要大,那么NTP客户端认为自己的时间比接受到的时间更为精确,不会进行时间的更新。

对于大部分NTP软件系统来说,服务启动后,stratum值初始是0,一旦NTP服务获取到了时间,NTP层次就设置为上级服务器stratum+1。对于具备卫星时钟、原子钟的专业NTP设备,一般stratum值初始是1。

NTPD启动后,stratum值初始是0,此时NTPD接收到NTP请求,回复stratum字段为0的NTP包,客户端接收后,发现stratum字段无效,拒绝更新时间,造成时间更新失败。
几分钟后,NTPD从上级服务器获取到了更新,设置了正确的stratum,回复stratum字段为n+1的NTP包,客户端接收后,确认stratum有效,成功进行时间更新。
在NTPD上级服务器不可用的情况下,NTPD将本机时钟服务模拟为一个上级NTP服务器,地址使用环回127.127.1.0,服务启动几分钟后,NTPD从127.127.1.0更新了时钟,设置了有效的stratum,客户端接收后,成功进行时间更新。
对应的/etc/ntp.conf配置项如下:

server 127.127.1.0

fudge 127.127.1.0 stratum 1

# NTPD把本地主机的时钟也看作外部时钟源来处理,分配的地址是127.127.1.0

# 设置本地时钟源的层次为1,这样如果NTPD服务从本地时钟源获取时间的话,NTPD对外宣布的时间层次为2。
https://blog.csdn.net/iloli/article/details/6431757

http://blog.163.com/little_yang@126/blog/static/2317559620091019104019991/

网络时间的那些事及ntpq详解

如何在linux 上配置NTP 时间同步

一:NTP是网络时间同步协议,就是用来同步网络中各个计算机的时间的协议。

二:NTP服务端配置

2.1、检查系统是否安装了NTP包(linux系统一般自带NTP4.2),没有安装我们直接使用yum命令在线安装: yum install ntp

2.2、NTP服务端配置文件编辑: vim /etc/ntp.conf

结果:

# @3新增-权限配置restrict 127.127.1.0restrict 192.168.31.0 mask 255.255.255.0 nomodify notrap# @3改动-注释掉上级时间服务器地址#server 0.centos.pool.ntp.org iburst#server 1.centos.pool.ntp.org iburst#server  2.centos.pool.ntp.org iburst#server 3.centos.pool.ntp.org iburst# @4新增-上级时间服务器server 127.127.1.0 # local clockfudge 127.127.1.0 stratum 10

2.3、启动NTP时间服务器:service ntpd start

2.4、设置NTP开机自动启动:chkconfig ntpd on

2.5、查看NTP是否正常运行:netstat -tlunp | grep ntp

2.6、配置防火墙过滤规则:/sbin/iptables -I INPUT -p udp --dport 123 -j ACCEPT

如何配置:/etc/sysconfig/iptables 文件内配置开放udp 123端口: -A INPUT -p udp --destination-port 123 -j ACCEPT

A.服务端配置文件解释

①:设定NTP主机来源(其中prefer表示优先主机),192.168.31.134是本地的NTP服务器,所以优先指定从该主机同步时间。

server 192.168.7.49 prefer

server 0.rhel.pool.ntp.org

server 1.rhel.pool.ntp.org

server 2.rhel.pool.ntp.org

server 3.rhel.pool.ntp.org

②:限制你允许的这些服务器的访问类型,在这个例子中的服务器是不容许修改运行时配置或查询您的Linux NTP服务器

restrict 192.168.0.0 mask 255.255.255.0 notrust nomodify notrap

在上例中,掩码地址扩展为255,因此从192.168.0.1-192.168.0.254的服务器都可以使用我们的NTP服务器来同步时间

#此时表示限制向从192.168.0.1-192.168.0.254这些IP段的服务器提供NTP服务。

restrict 192.168.0.0 mask 255.255.255.0 notrust nomodify notrap noquery

#设置默认策略为允许任何主机进行时间同步

restrict default ignore

三:NTP客户端配置

3.1、检查安装NTP服务有没有安装,未安装请自行安装

3.2、NTP客户端配置文件编辑: vim /etc/ntp.conf

# @1新增-权限配置restrict 192.168.31.0 mask 255.255.255.0 nomodify notrap# Use public servers from the pool.ntp.org project.# Please consider joining the pool (http://www.pool.ntp.org/join.html).# 注释掉原来的实际服务器地址#server 0.centos.pool.ntp.org iburst#server 1.centos.pool.ntp.org iburst#server 2.centos.pool.ntp.org iburst#server 3.centos.pool.ntp.org iburst# @2新增-自己的时间服务器地址server 192.168.31.223 prefer <==以这部主机为最优先#broadcast 192.168.1.255 autokey # broadcast server#broadcastclient # broadcast client#broadcast 224.0.1.1 autokey # multicast server#multicastclient 224.0.1.1 # multicast client#manycastserver 239.255.254.254 # manycast server#manycastclient 239.255.254.254 autokey # manycast client

3.3、手动同步一次时间:/usr/sbin/ntpdate192.168.31.134 (服务端主机IP,这里需要先关闭NTP服务哦)

3.4、启动NTP服务:service ntpd start

3.5、观察时间同步状况:ntpq -p

结果:

[root@localhost hct]# ntpq -p remote refid st t when poll reach delay offset jitter==============================================================================*192.168.31.134 LOCAL(0) 11 u 64 128 377 0.202 73.980 412.834

⑥查看时间同步结果:ntpstat

[root@hct ~]# ntpstat

unsynchronised

polling server every 8 s

同步失败,同步也需要时间,需等待5-10分钟再次查询:

Every 2.0s: ntpstat Tue Jul 11 16:55:57 2017synchronised to NTP server (10.10.11.247) at stratum 12 time correct to within 605 ms polling server every 128 s

时间同步完成,date一下看是不是和服务器主机时间一致

B.客户端配置文件详解

修改/etc/ntp/stpe-tickers文件,内容如下(当ntpd服务启动时,会自动与该文件中记录的上层NTP服务进行时间校对

C.系统时间与硬件时间同步

如果主从服务时间超过1000秒则不再进行同步了,这时候要手动同步,即:/usr/sbin/ntpdate命令,如果怕服务器时差会经常变动比较大可以再Linux中添加计划任务,例如:

10 5 * * * root /usr/sbin/ntpdate 192.168.31.223 && /sbin/hwclock -w

ntp服务,默认只会同步系统时间。如果想要让ntp同时同步硬件时间,可以设置/etc/sysconfig/ntpd文件,在/etc/sysconfig/ntpd文件中,添加 SYNC_HWCLOCK=yes 这样,就可以让硬件时间与系统时间一起同步。

拓展内容

ntpq -p各个选项相关信息

restrict 控制相关权限。

语法为: restrict IP地址 mask 子网掩码 参数

其中IP地址也可以是default ,default 就是指所有的IP

参数有以下几个:

ignore  :关闭所有的 NTP 联机服务

nomodify:客户端不能更改服务端的时间参数,但是客户端可以通过服务端进行网络校时。

notrust :客户端除非通过认证,否则该客户端来源将被视为不信任子网

noquery :不提供客户端的时间查询:用户端不能使用ntpq,ntpc等命令来查询ntp服务器

notrap :不提供trap远端登陆:拒绝为匹配的主机提供模式 6 控制消息陷阱服务。陷阱服务是 ntpdq 控制消息协议的子系统,用于远程事件日志记录程序。

nopeer :用于阻止主机尝试与服务器对等,并允许欺诈性服务器控制时钟

kod : 访问违规时发送 KoD 包。

restrict -6 表示IPV6地址的权限设置。

root@www ~]# vim /etc/ntp.conf# 1. 先处理权限方面的问题,包括放行上层伺服器以及开放区网用户来源:restrict default kod nomodify notrap nopeer noquery <==拒绝 IPv4 的用户restrict -6 default kod nomodify notrap nopeer noquery <==拒绝 IPv6 的用户restrict 220.130.158.71 <==放行 tock.stdtime.gov.tw 进入本 NTP 伺服器restrict 59.124.196.83 <==放行 tick.stdtime.gov.tw 进入本 NTP 伺服器restrict 59.124.196.84 <==放行 time.stdtime.gov.tw 进入本 NTP 伺服器restrict 127.0.0.1 <==底下两个是预设值,放行本机来源restrict -6 ::1restrict 192.168.100.0 mask 255.255.255.0 nomodify <==放行区网来源# 2. 设定主机来源,请先将原本的 [0|1|2].centos.pool.ntp.org 的设定注解掉:server 220.130.158.71 prefer <==以这部主机为最优先server 59.124.196.83server 59.124.196.84# 3.预设时间差异分析档案与暂不用到的 keys 等,不需要更动它:driftfile /var/lib/ntp/driftkeys /etc/ntp/keys

ntpd、ntpdate的区别

下面是网上关于ntpd与ntpdate区别的相关资料。如下所示所示:

使用之前得弄清楚一个问题,ntpd与ntpdate在更新时间时有什么区别。ntpd不仅仅是时间同步服务器,它还可以做客户端与标准时间服务器进行同步时间,而且是平滑同步,并非ntpdate立即同步,在生产环境中慎用ntpdate,也正如此两者不可同时运行。

时钟的跃变,对于某些程序会导致很严重的问题。许多应用程序依赖连续的时钟——毕竟,这是一项常见的假定,即,取得的时间是线性的,一些操作,例如数据库事务,通常会地依赖这样的事实:时间不会往回跳跃。不幸的是,ntpdate调整时间的方式就是我们所说的”跃变“:在获得一个时间之后,ntpdate使用settimeofday(2)设置系统时间,这有几个非常明显的问题:

第一,这样做不安全。ntpdate的设置依赖于ntp服务器的安全性,攻击者可以利用一些软件设计上的缺陷,拿下ntp服务器并令与其同步的服务器执行某些消耗性的任务。由于ntpdate采用的方式是跳变,跟随它的服务器无法知道是否发生了异常(时间不一样的时候,唯一的办法是以服务器为准)。

第二,这样做不精确。一旦ntp服务器宕机,跟随它的服务器也就会无法同步时间。与此不同,ntpd不仅能够校准计算机的时间,而且能够校准计算机的时钟。

第三,这样做不够优雅。由于是跳变,而不是使时间变快或变慢,依赖时序的程序会出错(例如,如果ntpdate发现你的时间快了,则可能会经历两个相同的时刻,对某些应用而言,这是致命的)。因而,唯一一个可以令时间发生跳变的点,是计算机刚刚启动,但还没有启动很多服务的那个时候。其余的时候,理想的做法是使用ntpd来校准时钟,而不是调整计算机时钟上的时间。

NTPD 在和时间服务器的同步过程中,会把 BIOS 计时器的振荡频率偏差——或者说 Local Clock 的自然漂移(drift)——记录下来。这样即使网络有问题,本机仍然能维持一个相当精确的走时。

免责申明:以上内容属作者个人观点,版权归原作者所有,不代表恩施知识网立场!登载此文只为提供信息参考,并不用于任何商业目的。如有侵权或内容不符,请联系我们处理,谢谢合作!
当前文章地址:https://www.esly.wang/diannao/11945.html 感谢你把文章分享给有需要的朋友!
上一篇:游戏网络延迟高「网络游戏延迟高是什么原因」 下一篇:网络舆论让我们思考更单一,网络舆论让我们思考更单一

文章评论