为什么功率因数会出现负值?,功率因数是负值是什么原因
参考功率分析仪手册,可参阅到有功功率P计算是瞬时的电压电流相乘后求平均:
其中:n为采样点数,由测量区间决定。
功率因数PF=P/S。其中S为视在功率,且一直为正值,所仪功率因数PF的正负跟随P的变化,当P为负时,PF也就是负了。
1
发电系统
参考IEC60375标准,功率因数PF=P/S,正负号由有功功率的方
功率因数通常都是正值,但现场测试时,会遇到仪器测量结果出现负值或正负跳变的情况,本文就和大家聊聊功率因数出现负值或正负跳变的常见工况。
参考功率分析仪手册,可参阅到有功功率P计算是瞬时的电压电流相乘后求平均:
其中:n为采样点数,由测量区间决定。
功率因数PF=P/S。其中S为视在功率,且一直为正值,所仪功率因数PF的正负跟随P的变化,当P为负时,PF也就是负了。
1
发电系统
参考IEC60375标准,功率因数PF=P/S,正负号由有功功率的方向决定。有功功率P和功率因数PF处于四象限运行,指示了测评点的发电/用电特性。当被测负载是发电的,按照IEC标准,位于第二、第三象限时,此时功率因数PF为负值。
IEC四象限
2
接线错误
现场实测时,若线路电流超过测量仪器本身最大允许的rms和峰值,需要外接传感器或者电流钳等扩展测量范围,传感器、电流钳的方向一定要和我们的接线示意图的方向一致,按照电流从源流向设备,是从源电压的正极流出,负极流入来接线。若接线人员操作疏忽,接线时电压或者电流有线接反,就会导致有功功率为负值,功率因数PF也就出现负值了。注意:不外接传感器,直接测量时,也需注意电压电流方向,接错方向也会出现负值。
带电流方向标识传感器
3
被测信号本身特性
电压U、电流I基波频率不相关时,长期累计平均功率P趋于0,短期内受不同更新周期计算起点影响,累积平均功率不能抵消,不同计算起点累计的正负会有所不同,P会出现正负跳动。PF正负跟随P,此时PF也会出现正负跳变。U、I波形图举例下图。
U和I波形举例
4
负载因素
负载接近纯感性或者纯容性,由于仪器本身精度或者外界噪声会引起U、I相位角在90°附近变化,从而出现P正负跳变。PF正负跟随P,此时PF也会出现正负跳变。
正负跳变
5
接线方式选择3P3W(3V3A)时,某些相是负值
3V3A接线示意图
3V3A实质为两瓦特计法,三相总功率为P1 P2(相关推导不在本文讲解,可参考往期微信文章《测量三相三线系统的三大误区》)。
本文以Y型负载为例(针对测量仪器,负载看作一个整体,不论是△或星型都是三根线进去,总功率也是P=P1 P2),如图5 3V3A接线方式,测试的是线电压和相电流,所以每个输入单元的电压和电流的相位角与实际负载的相位角不同。
R相电流I1和R-T电压U13接到一个功率测量单元,计算的功率记为P1=I1•U13;S相电流I2和S-T电压U23接到一个功率测量单元,功率记为P2=I2•U23;T相电流I3和R-S电压U12接到一个功率测量单元,计算的功率记为P3=I3•U12。结合图7,在三相平衡系统中,电压为基准,电流超前电压为正( ),电流滞后电压为负(-)。
当阻性平衡负载时,U13(URT)和I1(IR)的夹角 30°,此时P1>0;U23(UST)和I2(IS)的夹角-30°,此时P2>0;U12(URS)和I3(IT)的夹角 90°,P3=0。感性平衡负载时,相比阻性电压超前电流,电压将逆时针旋转一定角度α,P3>0,当α大于60°时加上纯阻性时UST超前I2的 30°夹角,共大于90°,则P2<0。容性平衡负载时,相比阻性电压落后电流,电压将顺时针旋转一定角度α,P3<0,当α大于60°时加上纯阻性时URT落后I1的 30°夹角,共大于90°,则P1<0。三个线电压向量由来
三相平衡系统阻性负载向量图
现场测试时,遇到有功功率为负、功率因数为负、效率为负等情况时,不一定是测量仪器出现了问题,可能和现场测试工况和被测信号等有关。本文几种常见的功率因数为负情况已和大家分享(现场测试情况不局限以上),希望给您测试测量带来帮助。
各种电测量仪器选德国GMC-I高美测仪找深圳茂迪,主要做:功率分析仪,电气安全/安规测试仪,绝缘/接地测试仪,数字模拟多用表,电能质量分析仪,高精度直流电源,多功能电量表,能源管理系统,测量传感器/变送器,角位变送器,网络测试仪、寻线仪 各种记录仪等。
欢迎【关注】小强,每天分享更多高精度功率分析仪、高精度数字万用表、电能质量分析仪、电气安规测试仪、绝缘电阻测试仪、直流电源等电工仪器的仪器知识。
文章评论