热学高考真题归类例析与热学应考必备知识「热学高考真题归类例析与热学应考必备知识」
湖南省湘阴县湘阴一中 杨宗礼
热学高考以选作题的形式出现,试题的特点是试题是由一小一大组成,小题是选择题或填空题的形式,小题一般考查分子动理论、热力学定律或晶体的知识,往往在一个小题中包含多个知识点。大题是计算题的形式,大题考查气体性质和气体实验定律.热学题目相对简单,考生选择该专题得分率比较高。下面通过高考真题归类例析,以飨读者。
一.分子动理论、内能及热力学定律
【例1】(2019·全国卷Ⅲ)用油膜法估算分子大小的实验中,
热学高考真题归类例析与热学应考必备知识
湖南省湘阴县湘阴一中 杨宗礼
热学高考以选作题的形式出现,试题的特点是试题是由一小一大组成,小题是选择题或填空题的形式,小题一般考查分子动理论、热力学定律或晶体的知识,往往在一个小题中包含多个知识点。大题是计算题的形式,大题考查气体性质和气体实验定律.热学题目相对简单,考生选择该专题得分率比较高。下面通过高考真题归类例析,以飨读者。
一.分子动理论、内能及热力学定律
【例1】(2019·全国卷Ⅲ)用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是_____________________。实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以___________________。为得到油酸分子的直径,还需测量的物理量是__________________________。
【解析】油膜法测量分子大小需要形成单分子油膜,故而需要减少油酸浓度;一滴油酸的体积非常微小不易准确测量,故而使用累积法,测出N滴油酸溶液的体积V,用V与N的比值计算一滴油酸的体积;由于形成单分子油膜,油膜的厚度h可以认为是分子直径,故而还需要测量出油膜的面积S,以计算厚度 。
【答案】(1).使油酸在浅盘的水面上容易形成一块单分子层油膜 (2). 把油酸酒精溶液一滴一滴地滴入小量筒中,测出1mL油酸酒精溶液的滴数,得到一滴溶液中纯油酸的体积 (3). 油膜稳定后得表面积S。
【必备知识】
估算问题
(1) 油膜法估算分子直径:d=
V为纯油酸体积,S为单分子油膜面积
(2)分子总数:N=nNA=·NA=NA [注意] 对气体而言,N≠。
(3)两种模型:
球模型:V=πR3(适用于估算液体、固体分子直径)
立方体模型:V=a3(适用于估算气体分子间距)
【例2】(2018年.北京卷)关于分子动理论,下列说法正确的是 ( )
A.气体扩散的快慢与温度无关
B.布朗运动是液体分子的无规则运动
C.分子间同时存在着引力和斥力
D.分子间的引力总是随分子间距增大而增大
【解析】气体扩散的快慢与温度有关,温度越高,扩散越快,故A错误;布朗运动是悬
浮在液体中的固体小颗粒的无规则运动,不是液体分子的无规则运动,固体小颗粒的无规则运动是液体分子的无规则运动的间接反映,故B错误;分子间同时存在着引力和斥力,分子力是引力和斥力的合力,分子间的引力和斥力都是随分子间距的增大而减小。当分子间距小于平衡位置间距时,表现为斥力,即引力小于斥力,当分子间距大于平衡位置间距时,表现为引力,即引力大于斥力,故C正确D错误。
【答案】C
【必备知识】
反映分子运动规律的两个实例
(1)布朗运动
①研究对象:悬浮在液体或气体中的固体小颗粒。
②运动特点:无规则、永不停息。
③相关因素:颗粒大小、温度。
(2)扩散现象
①产生原因:分子永不停息的无规则运动。
②相关因素:温度。
分子力与分子间距离的相互关系规律:引力和斥力均随分子间距离的增大而减小,但斥力减小得更快;都随分子间距离的减小而增加,但斥力增加得更快。
【例3】 (2016·全国卷Ⅰ)关于热力学定律,下列说法正确的是( )
A.气体吸热后温度一定升高
B.对气体做功可以改变其内能
C.理想气体等压膨胀过程一定放热
D.热量不可能自发地从低温物体传到高温物体
E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡
【解析】 根据热力学定律,气体吸热后如果对外做功,则温度不一定升高,说法A错误。改变物体内能的方式有做功和传热,对气体做功可以改变其内能,说法B正确。理想气体等压膨胀对外做功,根据=恒量知,膨胀过程一定吸热,说法C错误。根据热力学第二定律,热量不可能自发地从低温物体传到高温物体,说法D正确。两个系统达到热平衡时,温度相等,如果这两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡,说法E正确。
【答案】BDE
【必备知识】
对热力学定律的理解
(1)改变物体内能的方式有两种,只叙述一种改变方式是无法确定内能变化的。
(2)热力学第一定律ΔU=Q+W中W和Q的符号可以这样确定:只要此项改变对内能增加有正贡献的即为正。
(3)对热力学第二定律的理解:热量可以由低温物体传递到高温物体,也可以从单一热源吸收热量全部转化为功能,但不引起其他变化是不可能的。
二.固体、液体和气体
【例4】(2015·全国卷Ⅰ)下列说法正确的是( )
A.将一块晶体敲碎后,得到的小颗粒是非晶体
B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质
C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体
D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体
E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变
【解析】将一晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误。单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确。例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确。晶体与非晶体在一定条件下可以相互转化。如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确。熔化过程中,晶体的温度不变,但内能改变,故选项E错误。
【答案】BCD
【必备知识】
对晶体、非晶体特性的理解
(1)只有单晶体,才可能具有各向异性。
(2)各种晶体都具有固定熔点,晶体熔化时,温度不变,吸收的热量全部用于分子势能增加。
(3)晶体与非晶体可以相互转化。
(4)有些晶体属于同素异形体,如金刚石和石墨
【例5】(2018年江苏卷)一支温度计的玻璃泡外包着纱布,纱布的下端浸在水中。纱布中的水在蒸发时带走热量,使温度计示数低于周围空气温度。当空气温度不变,若一段时间后发现该温度计示数减小,则( )
A.空气的相对湿度减小
B.空气中水蒸汽的压强增大
C.空气中水的饱和气压减小
D.空气中水的饱和气压增大
【解析】温度计示数减小说明蒸发加快,空气中水蒸汽的压强减小,选项B错误;因空气的饱和气压只与温度有关,空气温度不变,所以饱和气压不变,选项C、D错误;根据相对湿度的定义,空气的相对湿度减小,选项A正确。
【答案】A
【必备知识】
1.饱和汽压的特点
液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。
2.相对湿度
某温度时空气中水蒸气的实际压强与同温度水的饱和汽压的百分比,即:B=×100%【例6】【2019.北京卷】下列说法正确的是
A. 温度标志着物体内大量分子热运动的剧烈程度
B. 内能是物体中所有分子热运动所具有的动能的总和
C. 气体压强仅与气体分子的平均动能有关
D. 气体膨胀对外做功且温度降低,分子 平均动能可能不变
【解析】
温度是分子平均动能 标志,所以温度标志着物体内大量分子热运动的剧烈程度,故A正确;内能是物体中所有分子热运动所具有的动能和分子势能之和,故B错误;由压强公式 可知,气体压强除与分子平均动能(温度)有关,还与体积有关,故C错误;
温度是分子平均动能的标志,所以温度降低,分子平均动能一定变小,故D错误。
【答案】A
【必备知识】
1.正确理解温度的微观含义
温度是分子平均动能的标志,温度越高,分子的平均动能越大。
2.物体的内能:物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能.
决定内能的因素
微观上:分子动能、分子势能、分子个数。宏观上:温度、体积、物质的量。
3. 气体的压强
①产生原因:大量气体分子无规则热运动对器壁碰撞而产生,气体作用在器壁单位面积上的压力叫压强.
②决定因素:宏观上取决于气体的体积和温度;微观上取决于单位体积内的分子数(分子数密度)和分子平均动能.
③单位:国际单位是帕(Pa),常用单位有:标准大气压(atm)、厘米汞柱(cmHg)和毫米汞柱(mmHg).换算关系是:1 atm=76 cmHg=1.013×105Pa,1 mmHg=133 Pa.
三.气体实验定律和理想气体状态方程
【例7】(2019·全国卷Ⅰ) 热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃。氩气可视为理想气体。
(i)求压入氩气后炉腔中气体在室温下的压强;
(i i)将压入氩气后的炉腔加热到1227 ℃,求此时炉腔中气体的压强。
【解析】(i)设初始时每瓶气体的体积为V0,压强为p0;使用后气瓶中剩余气体的压强为p1。假设体积为V0、压强为p0的气体压强变为p1时,其体积膨胀为V1。由玻意耳定律
p0V0=p1V1 ①
被压入进炉腔的气体在室温和p1条件下的体积为
②
设10瓶气体压入完成后炉腔中气体的压强为p2,体积为V2。由玻意耳定律
p2V2=10p1 ③
联立①②③式并代入题给数据得
p2=32×107 Pa ④
(ii)设加热前炉腔的温度为T0,加热后炉腔温度为T1,气体压强为p3,由查理定律
⑤
联立④⑤式并代入题给数据得
p3=1.6×108 Pa ⑥
【答案】(i)32×107 Pa (i i)1.6×108 Pa
【必备知识】
1.压强的计算
(1)被活塞、汽缸封闭的气体,通常分析活塞或汽缸的受力,应用平衡条件或牛顿第二定律列式计算。
(2)被液柱封闭的气体的压强,通常分析液片或液柱的受力,应用平衡条件或牛顿第二定律求解。
理想气体状态方程=
(1)当T1=T2时,p1V1=p2V2(玻意耳定律)
(2)当V1=V2时,=(查理定律)
(3)当p1=p2时,=(盖—吕萨克定律)
气体的三个实验定律都是理想气体状态方程的特例
2.合理选取气体变化所遵循的规律列方程
(1)若气体质量一定,p、V、T均发生变化,则选用理想气体状态方程列方程求解。
(2)若气体质量一定,p、V、T中有一个量不发生变化,则选用对应的实验定律列方程求
【例8】(2019·全国卷Ⅲ)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0cm。若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。已知大气压强为76cmHg,环境温度为296K。
(1)求细管 长度;
(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。
【解析】
【分析】
以“液柱”为模型,通过对气体压强分析,利用玻意耳定律和盖-吕萨克定律求得细管长度和温度,找准初末状态、分析封闭气体经历的变化时关键。易错点:误把气体长度当成细管长度。
【详解】(1)设细管的长度为l,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h,被密封气体的体积为V,压强为p;细管倒置时,气体体积为V1,压强为p1。由玻意耳定律有
pV=p1V1①
由力的平衡条件有
p=p0–ρgh③
式中,p、g分别为水银的密度和重力加速度的大小,p0为大气压强。由题意有
V=S(L–h1–h)④
V1=S(L–h)⑤
由①②③④⑤式和题给条件得
L=41cm⑥
(2)设气体被加热前后的温度分别为T0和T,由盖–吕萨克定律有
⑦
由④⑤⑥⑦式和题给数据得
T=312K⑧
【答案】(1)41cm;(2)312K
【必备知识】
解答“液柱”模型的关键是求被液柱封闭的气体的压强和体积,体积一般通过几何关系求解,求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:
(1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度)。
(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力。
(3)有时直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等。
(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷。
【例9】(2019· 全国Ⅱ卷)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在地面上,汽缸内壁光滑。整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:
(i)抽气前氢气的压强;
(ii)抽气后氢气的压强和体积。
【解析】(i)设抽气前氢气的压强为p10,根据力的平衡条件得
(p10–p)·2S=(p0–p)·S①
得p10= (p0 p)②
(ii)设抽气后氢气的压强和体积分别为p1和V1,氮气的压强和体积分别为p2和V2,根据力的平衡条件有p2·S=p1·2S③
由玻意耳定律得p1V1=p10·2V0④
p2V2=p0·V0⑤
由于两活塞用刚性杆连接,故
V1–2V0=2(V0–V2)⑥
联立②③④⑤⑥式解得
【答案】(i) (p0 p)(ii)
【必备知识】
两个或多个气缸封闭着几部分气体,并且气缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解。
高考物理热学计算方法
高考物理的热血部分内容常常让学生们觉得头疼,因为这是最复杂的题目之一,该怎么应对呢?我整理了物理学习相关内容,希望能帮助到您。
高中常用物理公式之热学
常考的6个热学知识点
一、分子运动论
1.物质是由大量分子组成的
2.分子永不停息地做无规则热运动
(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。
(2)布朗运动
布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。
(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。
因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。
(4)布朗运动产生的原因
大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。
(5)影响布朗运动激烈程度的因素
固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。
(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在10-6m,这种微粒肉眼是看不到的,必须借助于显微镜。
3.分子间存在着相互作用力
(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。
分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。
(2)分子间的引力和斥力都随分子间的距离r的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变化快。
(3)分子力F和距离r的关系如下图
4.物体的内能
(1)做热运动的分子具有的动能叫分子动能。温度是物体分子热运动的平均动能的标志。
(2)由分子间相对位置决定的势能叫分子势能。分子力做正功时分子势能减小;分子力作负功时分子势能增大。当r=r0即分子处于平衡位置时分子势能最小。不论r从r0增大还是减小,分子势能都将增大。如果以分子间距离为无穷远时分子势能为零,则分子势能随分子间距离而变的图象如上图。
(3)物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能。物体的内能跟物体的温度和体积及物质的量都有关系,定质量的理想气体的内能只跟温度有关。
(4)内能与机械能:运动形式不同,内能对应分子的热运动,机械能对于物体的机械运动。物体的内能和机械能在一定条件下可以相互转化。
二、固体
1.晶体和非晶体
(1)在外形上,晶体具有确定的几何形状,而非晶体则没有。
(2)在物理性质上,晶体具有各向异性,而非晶体则是各向同性的。
(3)晶体具有确定的熔点,而非晶体没有确定的熔点。
(4)晶体和非晶体并不是绝对的,它们在一定条件下可以相互转化。例如把晶体硫加热熔化(温度不超过300℃)后再倒进冷水中,会变成柔软的非晶体硫,再过一段时间又会转化为晶体硫。
2.多晶体和单晶体
单个的晶体颗粒是单晶体,由单晶体杂乱无章地组合在一起是多晶体。多晶体具有各向同性。
3.晶体的各向异性及其微观解释
在物理性质上,晶体具有各向异性,而非晶体则是各向同性的。通常所说的物理性质包括弹性、硬度、导热性能、导电性能、光的折射性能等。晶体的各向异性是指晶体在不同方向上物理性质不同,也就是沿不同方向去测试晶体的物理性能时测量结果不同。需要注意的是,晶体具有各向异性,并不是说每一种晶体都能在各物理性质上都表现出各向异性。晶体内部结构的有规则性,在不同方向上物质微粒的排列情况不同导致晶体具有各向异性。
三、液体
1.液体的微观结构及物理特性
(1)从宏观看
因为液体介于气体和固体之间,所以液体既像固体具有一定的体积,不易压缩,又像气体没有形状,具有流动性。
(2)从微观看有如下特点
①液体分子密集在一起,具有体积不易压缩;
②分子间距接近固体分子,相互作用力很大;
③液体分子在很小的区域内有规则排列,此区域是暂时形成的,边界和大小随时改变,并且杂乱无章排列,因而液体表现出各向同性;
④液体分子的热运动虽然与固体分子类似,但无长期固定的平衡位置,可在液体中移动,因而显示出流动性,且扩散比固体快。
2.液体的表面张力
如果在液体表面任意画一条线,线两侧的液体之间的作用力是引力,它的作用是使液体面绷紧,所以叫液体的表面张力。
特别提醒:
(1)表面张力使液体自动收缩,由于有表面张力的作用,液体表面有收缩到最小的趋势,表面张力的方向跟液面相切。
(2)表面张力的形成原因是表面层(液体跟空气接触的一个薄层)中分子间距离大,分子间的相互作用表现为引力。
(3)表面张力的大小除了跟边界线长度有关外,还跟液体的种类、温度有关。
四、液晶
1.液晶的物理性质
液晶具有液体的流动性,又具有晶体的光学各向异性。
2.液晶分子的排列特点
液晶分子的位置无序使它像液体,但排列是有序使它像晶体。
3.液晶的光学性质对外界条件的变化反应敏捷
液晶分子的排列是不稳定的,外界条件和微小变动都会引起液晶分子排列的变化,因而改变液晶的某些性质,例如温度、压力、摩擦、电磁作用、容器表面的差异等,都可以改变液晶的光学性质。
如计算器的显示屏,外加电压液晶由透明状态变为混浊状态。
五、气体
1.气体的状态参量
(1)温度:温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。
热力学温度是国际单位制中的基本量之一,符号T,单位K(开尔文);摄氏温度是导出单位,符号t,单位℃(摄氏度)。关系是t=T-T0,其中T0=273.15K两种温度间的关系可以表示为:T = t+273.15K和ΔT =Δt,要注意两种单位制下每一度的间隔是相同的。
0K是低温的极限,它表示所有分子都停止了热运动。可以无限接近,但永远不能达到。
气体分子速率分布曲线:
图像表示:拥有不同速率的气体分子在总分子数中所占的百分比。图像下面积可表示为分子总数。
特点:同一温度下,分子总呈“中间多两头少”的分布特点,即速率处中等的分子所占比例最大,速率特大特小的分子所占比例均比较小;温度越高,速率大的分子增多;曲线极大值处所对应的速率值向速率增大的方向移动,曲线将拉宽,高度降低,变得平坦。
(2)体积:气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。
(3)压强:气体的压强是由于大量气体分子频繁碰撞器壁而产生的。
(4)气体压强的微观意义:大量做无规则热运动的气体分子对器壁频繁、持续地碰撞产生了气体的压强。单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力。所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。
(5)决定气体压强大小的因素:
①微观因素:气体压强由气体分子的密集程度和平均动能决定:
A.气体分子的密集程度(即单位体积内气体分子的数目)越大,在单位时间内,与单位面积器壁碰撞的分子数就越多;
B.气体的温度升高,气体分子的平均动能变大,每个气体分子与器壁的碰撞(可视为弹性碰撞)给器壁的冲力就大;从另一方面讲,气体分子的平均速率大,在单位时间里撞击器壁的次数就多,累计冲力就大。
②宏观因素:气体的体积增大,分子的密集程度变小。在此情况下,如温度不变,气体压强减小;如温度降低,气体压强进一步减小;如温度升高,则气体压强可能不变,可能变化,由气体的体积变化和温度变化两个因素哪一个起主导地位来定。
2.气体实验定律
3.对气体实验定律的微观解释
(1)玻意耳定律的微观解释
一定质量的理想气体,分子的总数是一定的,在温度保持不变时,分子的平均动能保持不变,气体的体积减小到原来的几分之一,气体的密集程度就增大到原来的几倍,因此压强就增大到原来的几倍,反之亦然,所以气体的压强与体积成反比。
(2)查理定律的微观解释
一定质量的理想气体,说明气体总分子数N不变;气体体积V不变,则单位体积内的分子数不变;当气体温度升高时,说明分子的平均动能增大,则单位时间内跟器壁单位面积上碰撞的分子数增多,且每次碰撞器壁产生的平均冲力增大,因此气体压强p将增大。
(3)盖·吕萨克定律的微观解释
一定质量的理想气体,当温度升高时,气体分子的平均动能增大;要保持压强不变,必须减小单位体积内的分子个数,即增大气体的体积。
六、热力学定律
1.热力学第零定律(热平衡定律):如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡。
(1)做功和热传递都能改变物体的内能。也就是说,做功和热传递对改变物体的内能是等效的。但从能量转化和守恒的观点看又是有区别的:做功是其他能和内能之间的转化,功是内能转化的量度;而热传递是内能间的转移,热量是内能转移的量度。
(2)符号法则: 体积增大,气体对外做功,W为“一”;体积减小,外界对气体做功,W为“+”。气体从外界吸热,Q为“+”;气体对外界放热,Q为“一”。温度升高,内能增量DE是取“+”;温度降低,内能减少,DE取“一”。
(3)三种特殊情况:
l等温变化DE=0,即 W+Q=0
l绝热膨胀或压缩:Q=0即 W=DE
l 等容变化:W=0 ,Q=DE
(4)由图线讨论理想气体的功、热量和内能
3.热学第二定律
(1)第二类永动机不可能制成 (满足能量守恒定律,但违反热力学第二定律)
实质:涉及热现象(自然界中)的宏观过程都具有方向性,是不可逆的
(2)热传递方向表述(克劳修斯表述):
不可能使热量由低温物体传递到高温物体,而不引起其它变化。(热传导有方向性)
(3)机械能与内能转化表述(开尔文表述):
不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化。(机械能与内能转化具有方向性)。
4.热力学第三定律:热力学零度不可达到。
5.熵增加原理:在任何自然过程中,一个孤立系统的总熵是不会减少的。
——孤立系统熵增加过程是系统热力学概率增大的过程(即无序度增大的过程),是系统从非平衡态趋于平衡态的过程,是一个不可逆过程。熵的增加表示宇宙物质的日益混乱和无序
高中热力学定律知识点
热力学定律主要描述物理学中的热学规律:第一定律讲的是能量守恒及转化定律,即自然界中的一切物质都具有能量, 能量不可能被创造, 也不可能被消灭; 但能量可以从一种形态转变为另一种形态, 且在能量的转化过程中能量的总量保持不变。
第二定律也叫熵增加原理,即在孤立系统中,一切不可逆过程必然朝着熵不断增加的方向进行。主要是阐明与热现象相关的各种过程进行的方向、条件及限度的定律。
第三定律是根据第二定律推导出来的,也很好理解,即绝对零度不可能达到。因为物体分子和原子中与热能有关的各种运动形态不可能全部被停止的,这也是跟量子力学的观点相吻合的。
文章评论