平面和平面垂直的性质,平面垂直的判定与性质讲解
利用面面垂直的性质定理,证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.
解题技巧 (空间垂直关系的注意事项)
直线、平面之间的平行、垂直关系是重点考查的位置关系,当已知线面、面面垂直或平行时考虑用性质定理转化,要证线面、面面垂直或平行时要用判定定理进行论证. 平面与平面垂直的性质平面与平面垂直的性质是如果两个平面垂直,那么在一个平面内与交线垂直的直线垂直
解题技巧(性质定理应用的注意事项)
利用面面垂直的性质定理,证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.
解题技巧 (空间垂直关系的注意事项)
直线、平面之间的平行、垂直关系是重点考查的位置关系,当已知线面、面面垂直或平行时考虑用性质定理转化,要证线面、面面垂直或平行时要用判定定理进行论证.
平面与平面垂直的性质
平面与平面垂直的性质是如果两个平面垂直,那么在一个平面内与交线垂直的直线垂直于另一个平面;如果两个平面垂直,那么与一个平面垂直的直线平行于另一个平面或在另一个平面内。
两平面垂直的条件:
两平面垂直的条件是二面角是90度。若两个平面的二面角为直二面角,平面角是直角的二面角,则这两个平面互相垂直。一个平面过另一平面的垂线,则这两个平面相互垂直。
如果两个平面垂直,那么在一个平面内与交线垂直的直线垂直于另一个平面。如果两个平面垂直,那么与一个平面垂直的直线平行于另一个平面或在另一个平面内。平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
面面垂直性质定理:
1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
平面与平面垂直的性质定理
性质定理如下:
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)。
线面垂直定义:
如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”。
文章评论