当前位置:恩施知识网 > 科技创新 > 正文

买显卡懂得都懂「买电脑被坑了先来了解显卡知识吧」

欢迎关注我们,获取更多相关文章


GTX1080
【1】显卡基础参数
本目录包含以下几个分支:
1.显卡名词解释
2.显卡分类
3.显卡显示核心
4.显卡PCB
5.显存
6.显卡散热
7.显卡金手指
8.供电接口
9.显示接口
10.多卡互联技术
1.显卡名词解释
显示接口卡(Video card,Graphics card)、显示器

欢迎关注我们,获取更多相关文章

GTX1080

【1】显卡基础参数

本目录包含以下几个分支:

1.显卡名词解释

2.显卡分类

3.显卡显示核心

4.显卡PCB

5.显存

6.显卡散热

7.显卡金手指

8.供电接口

9.显示接口

10.多卡互联技术

1.显卡名词解释

显示接口卡(Video card,Graphics card)、显示器配置卡简称为显卡,是个人电脑基本组成部分之一。用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件。对于从事专业图形设计和高端游戏发烧的人来说显卡非常重要。

民用显卡芯片供应商主要包括AMD(原ATI)和Nvidia(英伟达)两家。

2.显卡分类

显卡按照存在位置分为集成显卡和独立显卡两大类。

集成显卡:

一种是指主板芯片组集成了显示芯片,使用这种芯片组的主板就可以不需要独显就实现显示功能,满足一般的家庭影音娱乐和办公应用,节省购买独显的开支。集成显卡的主板一般不带有显存,使用系统的一部分内存作为显存,一般可以在主板的BIOS里面调整,具体常见最大不超过256MB。

一种是指处理器内部集成了显示芯片,即“核显”。一般分为AMD现在的“APU”和英特尔的“核芯显卡”。显存同样从内存分享而来,由于核显性能的飞跃,现在的核显对内存性能的依赖很严重,还会较大程度的影响CPU的性能。

当代笔记本中的核显比较让人头疼,厂商普遍采用核显 独显联立的方案,核显输出视频信号以及轻负载渲染,独显在必要时开启进行工作。这样就造成无法强制关闭核显,有些场景下由于双显卡优化问题仅能使用核显,导致性能的损失。此外,笔记本的核显分配内存较大,普遍在256-512MB之间,有些甚至超过了768MB,然而由于笔记本BIOS的鸡肋设置,几乎不可能调节核显分配内存容量,使得大量内存白白被核显占用,造成浪费。目前来说,4GB内存比较吃紧,8GB才能有效解决核显占用浪费的问题。

AMD 890GX主板北桥特写,内含集成显卡HD4290显示芯片(板载集成显卡的顶峰)

INTEL核芯显卡

独立显卡:

独立显卡,简称独显,是指成独立的板卡存在,需要插在主板的相应接口上的显卡。独立显卡具备单独的显存,不占用系统内存(但当独立显存不够用时可以共享内存作为显存),而且技术上领先于集成显卡,能够提供更好的显示效果和运行性能。

独显由于拥有独立的一套运行环境,使得其核心运算有很大的发挥空间,因而性能相对于集成显卡来说有较大的飞跃。不过对于低端入门独显来说,并非一定比集显的性能要好。这个造成的主要原因是核显性能的飞跃。不过,较高性能的核显对应的CPU型号也属于高端,所以低端独显仍然可以存在,用来和低端CPU组合,或者作为JS坑钱的配置。

下面介绍台式机独立显卡的组成。以华硕ASUS ARES拆解图片为例。

其实显卡是一个小主机的缩影,并不像CPU那样高度集成,而是包含了很多组件。

3.显示核心(GPU)

GPU全称是Graphic Processing Unit,中文翻译为“图形处理器”。NVIDIA公司在发布GeForce 256图形处理芯片时首先提出的概念。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。如果说CPU是整个机器的心脏,那么GPU就是整个显卡的心脏。显卡负责的图形处理全部依靠这颗小小的GPU。一般说来,衡量GPU工作能力的参数有两个:流处理器数量和核心工作频率。其他特性:光栅单元(ROPS),L1缓存,核心面积,制造工艺。

GPU有不同的架构,其包含的参数直接决定了显卡性能的高低。主要参数是流处理器和显存控制器,与GPU代号有关。

ARES核心Cypress

4.显卡PCB

印刷线路板(PCB,Printed Circuit Board)主要功能是提供电子元器件之间的相互连接。如果一张显卡连最基本的电路都设计不好的话,即使给你再好的电容、显存颗粒等等可能也无法稳定的运行,更别提进一步超频什么的了。所以PCB对显卡来说也是非常重要的。一般说来,PCB的层数越多,长度越长,容纳的电气元件越多,电路越复杂,用料越多,显卡性能越好。

PCB上主要查看的是用料的高低。可以通过粗略查看电子元件的密度,显卡供电相数来判断同型号显卡的好坏。

ARES显卡正面PCB

5.显存

显存,也被叫做帧缓存,它的作用是用来存储显卡芯片处理过或者即将提取的渲染数据。如同计算机的内存一样,显存是用来存储要处理的图形信息的部件。显存的参数有:显存类型,容量,位宽,频率(延迟)。

从某种意义上讲,显存类型是当下选择显卡需要加大关注的地方。目前最好的显存类型是GDDR5,等效频率最高,其次是GDDR3,最后是目前常见的DDR3。注意,GDDR3和DDR3不是一样的,前者是专属显存,是基于DDR2内存改造而成,而DDR3是普通的内存,年代比GDDR3要新,但延迟和频率比不过GDDR3。之所以DDR3大量应用,是因为成本很低,为了缩减成本,用DDR3不足为奇。

容量:

容量,一般说来,够用足矣,没必要追求显存大。1680*1050分辨率,1G显存;1440*900及其以下,512M就可以;1920*1080,至少1.5G显存。对于某些极端游戏来说,2G显存可能都在1080P下不够用,但普遍游戏来说不会出现问题。

动态共享显存技术,是将内存划分为显存,以便当显卡独立显存不够用时临时占用。N卡将此技术成为TC,A卡为HM,这也就是市面上经常听见显卡是TC1024M或者HM1024M的,这时候所谓的显存大小就是共享后独立显存和共享显存容量之和,买显卡的时候需要注意。

显存位宽:

显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。位宽是由每个颗粒的位宽和使用数量决定的,比如每个颗粒32bit位宽,使用8颗并联就是256bit位宽了(其实容量也是这样决定的,128M*8=1024M)。位宽的作用就是增大带宽,带宽后面会有解释。

显存频率:

频率,显存的实际频率,等效频率是两个概念。由于现在显存都基于DDR系列内存改造,DDR因为能在时钟的上升沿和下降沿都能传送数据,所以比SDR同频效率高了一倍,因而就有了等效频率这一说法。GDDR3和DDR3都是等效两倍,而GDDR5是2倍于GDDR3的数据预取量和DQ并行总线,使GDDR5显存的实际速度又快了一倍,等效4倍。这也就是为什么GDDR5频率很高,只是等效频率高了,实际频率和GDDR3差不远。

带宽:

除容量外,类型、位宽和频率能共同决定一个重要的参数——带宽。显存带宽是指显示芯片与显存之间的数据传输速率,它以字节/秒为单位。

显存带宽=等效频率×显存位宽/8

带宽越大,意味着对GPU数据吞吐的能力越大。举个例子,水管的大小就是带宽,水流就是GPU的数据,水流小没有限制,大了水管小就会出现瓶颈了。因此,对带宽的要求就是:够用即可。

带宽的高低并不能直接对比不同型号的显卡高低,具体对比请看之后的章节。

显存颗粒特写

6.散热

显卡散热一般是风冷主动散热,就是在散热片上加装风扇,被动散热指的是没有风扇,依靠自然气流散热。

散热的好坏可以通过看散热面积大小,铜管直径和数量,风扇类型和数量来得到。

被动散热一般鳍片比较宽厚,覆盖面积大,应用于发热比较小的低端显卡(这只是一般说法,也有奇葩旗舰卡用被动散热,其意义并不大)。

影驰G210,被动散热

七彩虹iGame 680寂静之地,被动散热

主动散热,散热鳍片一般会有铜管。铜管加快核心向鳍片传热的速度,使得散热鳍片均匀受热,所以理论上铜管直径直径越大,铜管数量越多,散热越好。

ARES散热鳍片 铜管特写

主动散热用到的风扇有两种,普通散热风扇和涡轮风扇。前者一般转速低进风量较小,通常会配多个风扇在高端显卡上;而后者转速较高,进风量较大,一般一个显卡只用一个涡轮,但噪音较大。通常只有公版高端卡才会用涡轮。

ARES散热风扇特写

XFX HD6990涡轮风扇特写

除了风冷外,显卡也可以选择水冷。水冷可以不考虑风道对散热的影响,一般应用于多卡互联平台。至于显卡自己改造水冷平台的方法和技巧,请到精品区寻找相关的帖子。

Inno3D GTX580冰龙黑金版 水冷散热

7.金手指

显卡的金手指(connecting finger)是显卡与插槽的连接部件,所有的信号都是通过金手指进行传送的。金手指由众多金黄色的导电触片组成,因其表面镀金而且导电触片排列如手指状,所以称为“金手指”。金手指的形状代表了该显卡的插槽类型,目前显卡都是PCI-E 16X接口的,过去的显卡有AGP和PCI接口的。

金手指不决定性能高低,但如果该处存在氧化磨损,可能会导致显卡连接问题,造成与主板的通讯受限,该情况下有可能会极大的限制显卡性能,部分显卡性能问题可能就由此出现。因此,当显卡长时间暴露在外面时,再次使用前建议用橡皮擦拭一下金手指表面,插槽的灰尘也需清理,保证显卡和主板之间的通讯正常。

ARES金手指特写

8.供电接口

PCI-E 16X接口对显卡提供了75W供电,能满足中低端显卡需求。但高端显卡供电不够,只能需要电源对其独立供电,于是就有了供电接口。理论上6PIN接口能提供75W的供电, 8PIN接口提供150W。(不过在实际上他们能提供大于这个数值的供电)

需要注意的是,供电上限不代表该卡实际功耗上限,一般显卡功耗上限远比接口供电上限要小。

ARES独立供电接口特写(大家可以估算一下这个电老虎的理论功耗上限)

9.显示接口

显示接口是指显卡与显示器、电视机等图像输出设备连接的接口。下面介绍目前常见的显示四个接口。

VGA,就是显卡上输出模拟信号的接口,VGA(Video Graphics Array)接口,也叫D-Sub接口。VGA接口是显卡上应用最为广泛的接口类型,在中低端上显卡很常见。

DVI,全称为Digital Visual Interface,它是1999年由Silicon Image、Intel(英特尔)、Compaq(康柏)、IBM、HP(惠普)、NEC、Fujitsu(富士通)等公司共同组成DDWG(Digital Display Working Group,数字显示工作组)推出的接口标准。目前的DVI接口分为两种,一个是DVI-D接口,只能接收数字信号,接口上只有3排8列共24个针脚,其中右上角的一个针脚为空。不兼容模拟信号。另外一种则是DVI-I接口,可同时兼容模拟和数字信号。兼容模拟信号并不意味着模拟信号的接口D-Sub接口可以连接在DVI-I接口上,而是必须通过一个转换接头才能使用,一般采用这种接口的显卡都会带有相关的转换接头。由于DVI可以转换成其他三种接口,目前中高端都有DVI接口。显示器也普遍采用DVI和显卡对应。

HDMI,英文全称是“High Definition Multimedia”,中文的意思是高清晰度多媒体接口。应用HDMI的好处是:只需要一条HDMI线,便可以同时传送影音信号,而不像现在需要多条线材来连接;同时,由于无线进行数/模或者模/数转换,能取得更高的音频和视频传输质量。HDMI接口也可以转换成DVI或者VGA接口。目前高端显卡和显示器均用此类型接口,笔记本也有HDMI接口。

DP, 全称是”DisplayPort”。作为DVI的继任者,DisplayPort将在传输视频信号的同时加入对高清音频信号传输的支持,同时支持更高的分辨率和刷新率。DP拥有很多优势,但目前只是高端显示器的接口,中低端显卡很少能看见此接口。

对于显示接口,有些显卡并不能做到全面覆盖占有,当显示屏接口和显卡具有的接口出现不匹配时,需要采用转接口来实现。常见的转接口有DVI转VGA,DVI转HDMI,在此需注意某些显卡提供多个DVI接口,并不是所有DVI接口均可以进行转接,具体能否转接请参考相关说明书。

10.多卡互联技术

SLI和CrossFire分别是Nvidia和AMD(ATI)两家的双卡或多卡互连工作组模式。

组建SLI和Crossfire,需要几个方面:

(1)需要2个或以上的显卡,不要求必须是相同核心,混合CFX/SLI可以用于不同核心显卡。

在台式机上曾经有过A卡和N卡的混合交火,但其效果很差,基本取决于A卡的性能。不同核心的A卡也曾有过混合交火,但其结果也往往是等于高端显卡性能,低端的相当于没有发挥效果。

目前的混合交火较为有意义的是AMD的核显与其部分独显的交火,其本质还是同架构核心的CFX技术,效率不算很高。

(2)需要主板支持,SLI授权已开放,支持SLI的主板有NV自家的主板 和Intel的主板,如570 SLI(AMD)、680i SLI(Intel)。Crossfire开放授权INTEL平台较高芯片组,945.965.P35.P31.P43.P45.X38.X48.X58.X79等……AMD自家的770X、790X、790FX、790GX等均可进行crossfire。(芯片组太多了,不一一细说)一般来说,一个主板含有两个PCI-E插槽时均可支持CFX技术(具体核实请参照说明书),而支持SLI技术则需要额外说明。

(3)交火(SLI/CFX)数据线。双卡互联时仅需一条数据线,三卡互联则需要两条数据线或者一个专有的三卡数据线,四卡互联则需要三条数据线或者一个专有四卡数据线。

各种SLI桥

三路SLI专用线

四路SLI专用线

CFX四路交火连接方式(不一定这个形式,只要俩俩互联即可)

(4)系统支持。XP不支持多路SLI/CFX,仅支持双路,VISTA以上即可支持多路互联技术。

(5)驱动支持。目前的新驱动均可支持多路互联技术,不过需要在驱动控制面板中确认开启。

值得一提的是,多卡SLI/CFX时需要注意主板提供的带宽模式。一般单卡运行在X16模式下,此时的显卡性能几乎不受限制。而双卡如果不采用第三方PCI-E控制器的话,很难做到双X16模式,一般为双X8或者X16 X4。后者效果较差,因为短板效应严重,带宽不够时就会影响交火效率,双X8则不算很明显。支持3卡以上SLI/CFX的主板一般不会采用X4模式运行,基本不需要担心损失性能问题。为了确保多卡互联技术的效率,建议查看主板说明书,不支持双X8建议慎重选择双卡交火。

ARES交火金手指特写

有些单卡双芯的的显卡,其工作原理和SLI/CFX是类似的,只是将互联技术集合在单个显卡内,兼容性得到提高,效率也有一定的提升。不过双芯显卡普遍价格高于两个同型号单卡价格,并且双芯卡频率通常会比单卡频率低来减缓对功耗的需求。一般非发烧友不建议购买此类卡,性价比较低。

ARES PLX PEX8647桥接芯片与配套供电特写,可以理解为一种“欺骗”显卡核心的手段,让GPU认为是在和主板相连,从而实现CrossFire等技术。

以上介绍的是台式机独立显卡,下面简单介绍一下笔记本(移动)显卡。

【2】笔记本显卡简述

移动显卡,顾名思义,就是移动平台上应用的显示卡。由于移动平台对空间要求较高,独立显卡往往以整合到主板上的形式出现,虽然看起来像‘集显’,但这个是名副其实的‘独显’。因为,即使整合到主板上,它也是以整体的形式被划分在一个独立区域中。也就是说,移动平台只是将主板PCB和显卡PCB融合在一起,省去了连接的插槽和金手指以及显示输出接口。集显不同,显示芯片不是独立出现的,一般整合在主板的北桥中(现在是整合在CPU中),一般没有独立显存,这是和独显的主要区别。不过,现在笔记本也有DIY的趋势,很多移动平台也将独显从主板中区分开来,变成了真正的独显,目接口为MXM,在准系统本中较为常见。

整合在主板上的‘独显’(黑色区域为大致的显卡区域)

MXM接口的移动显卡GTX770M

笔记本显卡和台式机显卡没有本质区别,不过其核心确实不是一条生产线上制造出来的。笔记本核心侧重低功耗低发热,台式机显卡核心侧重高性能,故而很多笔记本显卡的频率都很低。有些玩家喜欢将同参数的笔记本显卡超频至台式机水平,这样做其实很危险,笔记本显卡的供电比台式机显卡差很多,核心工艺本来也不是侧重高频高性能,这样做的结果很可能就是核心承受超出其范围的负载,寿命大大缩短。不过也不是笔记本显卡不能超频,只要保证超频时不加电压,温度不超过机器承受的极限,这样的超频也是可以接受的。

【3】如何从显卡型号和参数简单辨别性能的高低

1.初步使用软件看参数

下面我们通过介绍GPU-Z识别参数来继续介绍显卡

上图为某GTX770台式机显卡截图

别以为上面都是英文的,看不懂,其实每一项都有中文解释,将鼠标移至每项参数上就可以看到中文的介绍了,在此不再累述。

这些参数中,我们需要注意的参数有如下(图示红框标出的):

Name(显卡名称)

GPU(核心代号)

Shaders(流处理器数量)

Memory Type(显存类型)

Bus Width(位宽)

Memory Size(显存容量)

Bandwidth(带宽)

Default Clock(核心默认频率)

Memory(显存频率)

Boost(可通俗理解为睿频频率)

显存部分刚才已经讲述,现在我来说明一下核心代号和流处理器。

核心代号就是指显卡的显示核心(GPU)的开发代号。而所谓开发代号就是显示芯片制造商为了便于显示芯片在设计、生产、销售方面的管理和驱动架构的统一而对一个系列的显示芯片给出的相应的基本的代号。不同的显示芯片都有相应的开发代号。

流处理器这个名词第一次出现在人们的视线中还要上溯到2006年12月4日, NVIDIA在当天正式对外发布新一代DX10显卡8800GTX,在技术参数表里面,看不到惯常使用的两个参数:Pixel Pipelines(像素渲染管线)和Vertex Pipelines(顶点着色单元),取而代之的是一个新名词:streaming processor,中文翻译过来就是流处理器(也有叫SP单元的,一个意思)它的作用就是处理由CPU传输过来的数据,处理后转化为显示器可以辨识的数字信号。

流处理器多少对显卡性能有决定性作用,可以说高中低端的显卡除了核心不同外最主要的差别就在于流处理器数量,但是有一点要注意,就是NV和AMD的显卡流处理器数量不具有可比性,他们两家的显卡核心架构不同,不能通过比较流处理器多少来看性能。同一代的显卡,可以用SP数量差距来大概估算性能的差别。

开普勒架构以后的显卡,增加了boost功能,使得其核心在较高负载下能在功耗允许的范围内提高频率,以提高显卡性能。GPU-Z上显示的Boost频率并非实际最高值,如果想要知道你的显卡到底能有多高的boost频率,可以开启GPU-Z上自带的一个渲染,如下图

开始后将GPU-Z选项卡切换到“Sensors”项,查看GPU Core clock,即可了解该显卡最高boost频率为多少

例如我的GTX770M,显示为boost 797MHZ,实际为928MHZ

(PS:这里提示一下,如果是笔记本显卡的话,GPU-Z想要查看独显频率需要对该程序右键,选择图形处理器--高性能NVIDIA处理器后,才能让独显运行此程序,否则运行渲染的是核显,无法查看独显频率)

2.根据型号简单判断显卡性能的高低

现在我来说选显卡看参数的顺序。

首先,我们可以看显卡名称。名称可以从某种程度上代表了显卡的性能优劣。

Nvidia显卡名称举例:GTX780TI

GTX为显卡版本,性能排序GTX>GTS>GT>G

以前的老型号显卡还有GS,GSO,GX2等,GX2为双芯卡,GS低于GT,GSO高于GS。

TI为显卡名称后缀,可能代表加强,也可能是减弱,性能排序TI>无>SE>=LE。有些显卡名称后面还有M,这个是笔记本显卡代号。台式机和笔记本显卡不好比较,但一般同型号桌面(台式机)显卡比移动(笔记本)显卡要好。有时候还有‘ ’号,代表对原显卡的改造,一般是更好,例如GTX260 >GTX260,但GTX460 不敌同频GTX460,比公版的低频GTX460强。

目前已经存在的后缀有TI, ,LE,SE,M,MX。MX是同型号加强版,性能有所提升。

放几个典型显卡GPU-Z截图

GTX780TI

GTX460 (官方有时候叫GTX460 V2)

GTX560SE

GT640M LE

GTX670MX

数字部分,第一位代表显卡系列(如果GT放在最后,那个系列的显卡比放在前面的显卡还老,例如9600GT比GT240老),第二位代表同系列显卡的高低端。主要看第二位数字大小。在第一位数字相同下,第二位越大越好;第二位数字相同,第一位数字越大越好,不过此对比对低端往往不管用,如GT440

GTX280>GT440

GTX280

不过还是在中低端上失效,比如

GT610

GT630

AMD(ATI)显卡举例:HD7970

HD为显卡版本,现在A卡没有什么区别,统一用HD开头。结尾的M也是代表移动版本

第一位数字代表显卡系列,第二位代表同系列显卡的高低端,第三位一般代表同核心代号不同规格造成的高低端(不一定非是同核心代号,例如HD677O和HD6790)。主要也是看第二位数字的大小。比较方法和N卡类似,第三位是最后考虑的因素。

现在AMD的名称更新换代了,采用R5/R7/R9的命名方式,典型的为R9 290X,R9 M270。

R后面的数字确定产品的高低端,“M”代表移动显卡,后面的和上面讲述的类似。

3.根据核心参数进一步判断显卡性能高低

不过,看核心代号推测显卡性能优劣还是太浅显了,很多时候并不准确。

因此,我们还要看核心代号和流处理器个数。

核心代号标示着核心的新旧有时候不同名称的显卡核心代号一样,有时候同名称的显卡核心代号也有可能不一样。核心代号决定着SP数量的最大值。

流处理器,SP个数肯定是越大越好,但比较的前提是核心代号相同或者核心代号都是同一系列的。A卡不好辨别是否同一代,但A卡目前不同系列直接比较SP数量也能近似得出好坏的结论,例如800SP的HD5770大于320SP的HD3870。但是如果只相差了200SP以内,就比较难辨别了,一般是新一代的显卡性能会更好,例如640SP的HD7770大于800SP的HD6770

对比A卡,N卡核心代号很容易辨别,同系列的核心字母相同,只要比较数字大小就知道核心优劣。但要注意,最后一位数字是越小越好,例如GK104的最大流处理器数量比GK106的最大流处理器数量要大。同系列可以直接比较SP数,越大显卡越好,例如192SP(GF106/GTS450,GF116/GTX550TI)弱于336SP(GF104/GTX460,GF114/GTX560)。不同系列显卡,同SP数量时,系列越老越好(即N卡SP效率是越来越低),例如96SP的9600GSO(G92)>GT240(GT216)>GT440(GF108),384SP的GTX560TI(GF114)>GTX650(GK107)

下面是相关GPU-Z截图

另外,核心的新旧、高低还可以用GPU-Z上显示的Technology(制作工艺),Release Date(发布日期)和Transistors(晶体管数量)来确定。

比较完名称和SP后,就可以看核心频率了,肯定是频率越高越好了。。。

核心部分比较完毕后,显存的参数也是需要比对的。例如GT650M D5版,GT745M,GT740M GK208版,这三个核心方面流处理器个数完全一致,频率方面GT740M最高,GT745M次之,GT650M D5最低。但实际上,性能却是相反排布的。

这里面就是显存参数的差异导致的。GT650M D5采用的是GDDR5显存,频率高带宽大,比GT745M多了一倍多的带宽。开普勒384SP还是比较吃带宽的,所以GT745M显然是被限制了带宽导致性能缩水,最终不如GT650M的性能。而GT740M比GT745M还少了一半的位宽,根据带宽公式可知带宽又少了一半,性能急剧下降。根据以往的评测对比,同频下这样的削减位宽导致性能下降幅度达40%,也就是几乎性能损失了一半,由此可见带宽对显卡性能的发挥有多么的重要。

(但这里还是要说明一下,不同架构的显卡直接比较带宽毫无意义,核心的能力首先决定性能的高低,带宽只是能否限制核心性能而已)

以上的判断,基本就可以让你比较出两个显卡的优劣了(只局限于同品牌核心的,N对N,A对A)。不同品牌核心的比较,一般只能靠专业评测来一较高下,和CPU的比较是一样的。

【4】显卡型号排名天梯

现在给出吧友们帮我们做出的显卡性能比较

【5】如何简单识别淘宝假卡

现在说一下二手显卡购买时注意的问题。TB上琳琅满目的二手卡,有些价格很诱人,但是那些显卡真的是他们所谓的高端显卡么?

咱们来看看TB上所谓的超低价高端显卡参数

乍一看,诶呦,名称和核心代号都是名副其实的GF100系列啊。。。

咱们再来看看真正的GF100系列长啥样呢

对比红框里的与上面商家给的图,立刻就发现了猫腻:流处理器数量不同,显存类型不同,带宽也相差好远(带宽不一定完全相同,这个和显存频率有关系)。一般说来,显卡名称、核心代号、流处理器个数、显存类型和位宽都是匹配的,不会相差太远。GTS450都是192SP的GF106核心,位宽最大128bit,显存标配是GDDR5(有些奸商可能会缩成DDR3)。GTX460同理,所以商家给的96SP版本的GT450/GTX460明显有问题,如果没有猜错,这俩都应该是GT240,被奸商篡改成GTS450/GTX460,忽悠消费者。

说到这里,我们为了识别是否是假卡,必须知道和名称匹配的显卡的详细参数,这就需要我们去记了。大家也可以去GPU-Z的官方网站——techPowerUp里的GPU Database来查看各种显卡型号的参数。

买显卡懂得都懂「买电脑被坑了先来了解显卡知识吧」

电脑显卡知识普及

  我们在组装电脑的时候肯定是需要考虑到显卡性能,如果电脑配置中的显卡性能不行,那么电脑肯定玩不了大型游戏。可能一些新电脑用户对显卡一点也不了解,下面我就来详细介绍一下电脑显卡的基础知识,供大家参考和学习。

   一、显卡简介

  显卡是个人电脑最基本组成部分之一。显卡的用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重要。 民用显卡图形芯片供应商主要包括AMD(ATI)和Nvidia(英伟达)两家。

  一些常规显卡图赏

   二、显卡工作原理

  数据(data)一旦离开CPU,必须通过4个步骤,最后才会到达显示屏:

  (1)从总线(bus)进入GPU (Graphics Processing Unit,图形处理器):将CPU送来的数据送到北桥(主桥)再送到GPU(图形处理器)里面进行处理。

  (2)从 video chipset(显卡芯片组)进入video RAM(显存):将芯片处理完的数据送到显存。

  (3)从显存进入Digital Analog Converter (= RAM DAC,随机读写存储数—模转换器):从显存读取出数据再送到RAM DAC进行数据转换的工作(数字信号转模拟信号)。

  (4)从DAC 进入显示器 (Monitor):将转换完的模拟信号送到显示屏。

   三、显卡主要参数

  (1) GPU

  GPU全称是Graphic Processing Unit,中文翻译为“图形处理器”。NVIDIA公司在发布GeForce 256图形处理芯片时首先提出的概念。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。GPU所采用的核心技术有硬件T&L(几何转换和光照处理),立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬件T&L技术可以说是GPU的标志。GPU的生产主要由nVidia与ATI两家厂商生产。

  显示芯片(芯片厂商、芯片型号、制造工艺、核心代号、核心频率、SP单元、渲染管线、版本级别)。

  (2)显存

  显存是显示内存的简称。顾名思义,其主要功能就是暂时将储存显示芯片要处理的数据和处理完毕的数据。图形核心的性能愈强,需要的显存也就越多。以前的显存主要是SDR的,容量也不大。市面上的显卡大部分采用的是GDDR3显存,现在最新的显卡则采用了性能更为出色的GDDR4或GDDR5显存。显存主要由传统的内存制造商提供,比如三星、现代、Kingston等。 显卡上采用的显存类型主要有SDR、DDR SDRAM(双倍数据速率)、DDR SGRAM(专业级别)、DDR2.GDDR2.DDR3.GDDR3.GDDR4.GDDR5。 显卡内存(显存类型、显存容量、显存带宽(显存频率×显存位宽÷8)、显存速度、显存颗粒、最高分辨率、显存时钟周期、显存封装)

  (3)显卡BLOS

  显卡BIOS主要用于存放显示芯片与驱动程序之间的控制程序,另外还存有显示卡的型号、规格、生产厂家及出厂时间等信息。打开计算机时,通过显示BIOS 内的一段控制程序,将这些信息反馈到屏幕上。早期显示BIOS 是固化在ROM 中的,不可以修改,而多数显示卡则采用了大容量的EPROM,即所谓的Flash BIOS,可以通过专用的程序进行改写或升级。

  (4)显卡PCB板

  就是显卡的电路板,它把显卡上的其它部件连接起来。功能类似主板。显卡PCB板(PCB层数、显卡接口、输出接口、散热装置)

   四、显卡分类

  (1)集成显卡

  集成显卡是将显示芯片、显存及其相关电路都做在主板上,与主板融为一体;集成显卡的显示芯片有单独的,但大部分都集成在主板的北桥芯片中;一些主板集成的显卡也在主板上单独安装了显存,但其容量较小,集成显卡的显示效果与处理性能相对较弱,不能对显卡进行硬件升级,但可以通过CMOS调节频率或刷入新BIOS文件实现软件升级来挖掘显示芯片的潜能。

  优点:功耗低、发热量小、部分集成显卡的性能已经可以媲美入门级的独立显卡,所以不用花费额外的资金购买显卡。

  缺点:不能换新显卡,要说必须换,就只能和主板,CPU一次性的换。

  (2)独立显卡

  独立显卡是指将显示芯片、显存及其相关电路单独做在一块电路板上,自成一体而作为一块独立的板卡存在,它需占用主板的扩展插槽(ISA、PCI、AGP或PCI-E)。 优点:单独安装有显存,一般不占用系统内存,在技术上也较集成显卡先进得多,比集成显卡能够得到更好的显示效果和性能,容易进行显卡的硬件升级。 缺点:系统功耗有所加大,发热量也较大,需额外花费购买显卡的资金。

   五、双卡技术

  SLI和CrossFire分别是Nvidia和ATI两家的双卡或多卡互连工作组模式。其本质是差不多的。只是叫法不同SLI Scan Line Interlace(扫描线交错)技术是3dfx公司应用于Voodoo 上的技术,它通过把2块Voodoo卡用SLI线物理连接起来,工作的时候一块Voodoo卡负责渲染屏幕奇数行扫描,另一块负责渲染偶数行扫描,从而达到将两块显卡“连接”在一起获得“双倍”的性能。

  CrossFire,中文名交叉火力,简称交火,是ATI的一款多重GPU技术,可让多张显示卡同时在一部电脑上并排使用,增加运算效能,与NVIDIA的SLI技术竞争。CrossFire技术于2005年6月1日,在Computex Taipei 2005正式发布,比SLI迟一年。从首度公开截至2009年,CrossFire经过了一次修订。

   六、显示芯片

  常见的生产显示芯片的厂商:Intel、AMD、nVidia、VIA(S3)、SIS、Matrox、3D Labs。

  Intel、VIA(S3)、SIS 主要生产集成芯片。

  ATI、nVidia 以独立芯片为主,是市场上的主流。

  Matrox、3D Labs 则主要面向专业图形市场。

  N卡:

  GTX高端/性能级显卡GTX590 GTX580 GTX480 GTX295 GTX470 GTX285 GTX280 GTX460 GTX275 GTX260+ GTX260 GTS代表主流产品线GTS450 GTS250(9800GTX+ ) GT代表入门产品线GT120 GT130 GT140 GT200 GT220 GT240。

  G低端入门产品G100 G110 G210 G310(9300GS 9400GT ) 。

   七、显卡生产厂家

  显卡业的竞争也是日趋激烈。各类品牌名目繁多,以下是一些常见的牌子,仅供参考:蓝宝石 、华硕、迪兰恒进、丽台、索泰、讯景、技嘉、映众 、微星、艾尔莎、富士康、捷波、磐正 、映泰 、耕升、旌宇、影驰 、铭瑄、翔升、盈通 、祺祥、七彩虹、斯巴达克、双敏、精雷、昂达 JCG、金辰光。

  其中蓝宝石、华硕是在自主研发方面做的不错的品牌,蓝宝石只做A卡,华硕的A卡和N卡都是核心合作伙伴,相对于七彩虹这类的通路品牌来说,拥有自主研发的厂商在做工方面和特色技术上会更出色一些,而通路显卡的价格则要便宜一些(注:七彩虹、双敏、盈通、铭瑄和昂达都由同一个厂家代工,所以差别只在显卡贴纸和包装而已,大家选购时需要注意),每个厂商都有自己的品牌特色,像华硕的“为游戏而生”,七彩虹的“游戏显卡专家”都是大家耳熟能详的。

买显卡懂得都懂「买电脑被坑了先来了解显卡知识吧」

显卡相关知识介绍

  对于显卡,不少人还是对它不太了解的。下面我就为大家介绍一下关于显卡的相关知识吧,欢迎大家参考和学习。

  据统计,人们接触的信息80%以上是视觉信息,一幕幕动人的场景,一幅幅美丽的画面,勾画出了趣味横生的生活百态,描绘出了绚丽多姿的七彩世界。

  也许您没注意,小小的电脑荧光屏,能够展现出阳光明媚风和日丽的春天、骄阳似火绿树成荫的盛夏、天高气爽硕果累累的金秋和天寒地冻白雪皑皑的隆冬。更有高科技的电脑制作,把我们带到了神奇美妙三维世界。

  在一台电脑里, 显示器 是电脑和用户交互的一个关键的图文界面,五颜六色的画面要怎么精彩就可以怎么精彩,要多么动人就可以多么动人。不过这都需要显示卡给显示器发送显示信号、并控制显示器显示出绚丽的色彩,所以显示卡和显示器都是电脑显示不可缺少的部件。

  显示卡在多媒体技术和图形处理技术中越来越重要,一块好的显示卡可以比主板还贵就说明了它的比重。目前“一板一卡”的流行配套 方法 也表明了电脑设计者们对显示卡的重视。显示技术也不断在更新。

  有关图形显示技术的术语

  对图形专业术语了解得多一些,可以帮助我们更好地选择适合自己的图形显示卡,下面是一些在谈及显示技术时常用到的名词术语。

  图形加速卡中的述语

  ◇颜色深度:用来描述图形卡一次能够显示多少种颜色。8位颜色深度可以显示256种颜色;16位颜色深度可以显示65536种颜色;24位颜色深度可以显示16M种颜色。

  ◇双口存储器:是一种带有两个端口的RAM,图形数据可以直接从一个端口进入而从另一个端口输出,从而从速度上获得额外的提升。VRAM和WRAM都是双口存储器。

  ◇EDO VRAM:是一种更快速的VRAM

  ◇RAMDAC:数模变换器,它是用来将PC能够处理的数字信息转变成显示器可以用于显示的模拟信号。它的变换速度越快,你就可以得到更高的屏幕刷新率。

  ◇刷新率:屏幕每秒钟重绘的次数。屏幕刷新频率低于55Hz将会有闪烁感,容易使人的眼睛产生疲劳。

  ◇SGRAM:一种同步存储器,理论上可以使图形卡处理速度加倍。SDRAM和SGRAM,它们基本上是一样的,只是SGRAM具有一些图形增强方面的特性。

  ◇视频插值:当你要放大一个视窗口时,除非你的图形卡使用了插值处理,否则图象边缘会变成锯齿状。一般都希望在X轴和Y轴两个方向都能进行插值。

  3D软件术语

  ◇API:(应用程序编程接口)API是用来使3D程序与3D图形加速卡进行通讯的软件接口。为了使3D图形卡能用来加速3D游戏的执行,游戏的开发应使用图形卡能够支持的API。

  ◇Direct3D:Microsoft的Direct3D原希望成为一种所有的3D软件和3D图形卡都支持的标准。然而,由于Direct3D在性能方面不是尽如人意,所以游戏开发商也经常使用那些针对特定3D图形卡的API。

  ◇OpenGL:它是一种专业的API,在高端CAD软件中被广泛使用。软件开发商正在考虑使用OpenGL,而不是Direct3D来作为软件开发的API。

  3D图像技术术语

  ◇Alpha混合:是一种颜色混合方法,它可以将两个重叠的纹理图像进行混合,使其中的一个看起来是透明的。例如在一面绿色墙面上映出的激光束光焰。激光束的图像被一个黑盒子所包围,为了使激光束看起来更真实,黑色需要去掉,墙面的绿色应该与光束的颜色进行混合。

  ◇滤波:消除3D图像中的色块感,使图像看起来更平滑。

  ◇雾化:当3D对象移动时,将3D对象与固定的颜色进行混合,使它看起来像正在逐渐消失,或者正在从雾里,或黑暗中出现。

  ◇MIP映射:以几种不同的尺寸大小来保存一幅纹理图形,以适合对象的不同尺寸。这一点对显示正在移动的纹理贴图对象很有帮助。若没有MIP映射,当3D芯片压缩或者扩大纹理图形来适应对象尺寸大小的变化时,会在纹理贴图对象的边缘有闪烁不定的感觉。有了MIP映射,就用不着太多的压缩处理。图形加速芯片将根据对象的大小来快速地选择采用更大或更小的纹理图形。

  ◇透视校正:在不同角度和距离的情况下都能使纹理贴图3D对象看起来更真实。

  ◇纹理映射:将一个位图贴在3D对象表面上可以使对象看起来更真实,例如在Microsoft的Monster Truck Madness游戏中,当你在场景中移动时,图形卡会不断地将沙地位图贴在沙丘上,以使沙丘看起来更真实。

  AGP(Accelerated Graphics Port)图形加速接口标准

  AGP是新一代显示卡接口技术,可大幅提高3D图形的显示能力。目前,各大显示卡厂家已有大量AGP显示卡产品推出,带AGP接口的主板也已面市。AGP 3D显示卡正大量涌入显示卡市场。

  虽然现在PC的图形处理能力越来越强,但要完成细致的大型3D图形描绘,PC平台的性能仍然有限,为了让PC的3D应用能力能同图形工作站一较高低,Intel公司开发了AGP。推出AGP的主要目的就是要大幅提高主流PC的图形尤其是3D图形的显示能力。配合Pentium II的DIB(双重独立总线)技术以及MMX技术,AGP将会成为新一代的商用电脑标准。

  什么是AGP

  1.PCI总线在3D应用中的局限

  AGP主要针对现在的PCI显示卡在处理动画和3D绘图时出现的数据传输瓶颈情况,随着处理器速度越来越快,瓶颈情况还会更加严重,特别是在3D图像的情况下更明显。

  在3D图形描绘中,储存在PCI显示卡上显示内存中的不仅有影像数据,还有Z轴的距离数据,TextureData(纹理数据)及Alpha变换数据等。储存纹理数据的显示内存容量越多越好。从整个系统来看,增加显示内存还不如增加主内存划算,而且把纹理数据储存在主内存比储存在显示内存更可有效利用内存。也就是说,当应用程序结束后,它所占用的主内存空间又可恢复,纹理数据并不永远占用主内存的空间。

  遗憾的是,当纹理数据从显示内存移到主内存时,数据传输的瓶颈也从显示卡上的内存总线转移到了PCI总线上,而纹理数据传输量就将超过100MB/sec,现有的PCI总线远远不能满足要求,因而就需像AGP这样可连结主内存与显示卡的新接口。

  2.AGP的结构

  AGP的目的是以相对低价格来达到高性能3D图形的描绘功能,为此Intel对PCI再扩充了三项主要的规格而定义了AGP:

  (1)数据读写操作的管道处理;

  (2)133MHz的数据传输周期;

  (3)地址信号与数据信号分离。

  AGP的原理是把显示芯片独立设置在系统总线上面,把显示芯片直接同芯片组的内存控制器电路相连。在这种“点对点”的连接中,还利用了时钟信号的两边沿(即上升沿和下降沿)作数据传输,所以速度成倍提高。也由于采用点对点连接方式,一个系统只能有一个AGP,所以,AGP不会取代PCI总线。第一代AGP以66MHz的速度传送数据,是PCI总线的一倍;第二代AGP将可达133MHz,足以满足用软件播放DVD光盘的要求。数据传输速度最高可达533MB/sec,约为目前PCI的4倍。PCI同AGP比较如下表所示:

  PCI同AGP的比较

  PCI总线    AGP

  传输方式     同步     同步

  内存优先存取   不支持    支持

  数据线位宽    32位     32位

  总线时钟     33MHz     66MHz

  最高数据传输速度 133MB/sec   533MB/sec

  可连接扩展卡数  最多有5个  1个

  信号线数     49      65

  3D图形的成图处理需高显示芯片与显示内存间的数据传输速度。目前,大多数显示卡都采用较快速的显示内存,但这样会提高显示卡的成本,折衷的方法之一就是将纹理数据从显示内存移到主内存,因此可减少显示内存的容量,从而降低显示卡的成本。

  AGP不只用于3D图形,对2D图形也同样有效。由于显示卡通过AGP、芯片组与主内存相连,提高了显示芯片与主内存间的数据传输速度,让原需存入显示内存的纹理数据,现可直接存入主内存,这样可提高主内存的内存总线使用效率,也提高了画面的更新速度及ZBuffering(Z缓冲)等数据的传输速度,而且还减轻了PCI总线的负载,有利于 其它 PCI设备充分发挥性能。要知道,在PC98规格中,ISA总线已被取消,ISA设备终将被淘汰,所以,把占用了PCI总线大量带宽的显示卡移到AGP上是非常必要的步骤。

  AGP在影像数据的传输效果方面也有不错的表现。当MPEG2影像数据经CPU解压时,需通过总线将影像数据写入显示内存,已解码全画面的MPG2影像数据,需以15~20MB/sec的速度传输。虽然PCI总线的实际数据传输速度为27~33MB/sec,但数据的传输如果搭配不当,则画面恐怕将很不流畅。

  目前,AGP尚留有两项限制其发展的因素,其一是主内存的数据传输速度。支持AGP的显示芯片在作3D图形描绘时需对主内存进行存取操作,因此将增加主内存的内存总线流量,一般需要有800MB/sec以上的速度。但目前主内存的数据传输速度大多在200~300MB/sec,以这样的速度,即使利用了AGP也无法作细致的3D图形描绘。为了达到800MB/sec的数据传输速度就需有高速的DRAM,如100MHz以上的SDRAM、RDRAM或其它如SGRAM、VRAM等。AGP的另一个问题是显示卡的兼容性。

  前景展望

  AGP是开放的规格,厂家不需付出专利费。目前,如3Dfx、3Dlabs、ATI、CirrusLogic、Rendition、S3、Trident等3D显示卡厂商都已表明支持AGP,而且已有部分原型产品推出。Intel不仅已与微软签约,还鼓励多家显示卡制造厂家采用AGP。目前一些高性能的PC已率先采用。因此,AGP可在很短的时间内普及,Intel公司认为,到2000年,90%的PC将配置AGP显示卡。

  为发挥AGP的优点,微软已在其新版Windows 98及Windows NT 5.0中支持AGP功能,并且通过DirectDraw API为软件厂商提供编程接口。

  配有AGP接口的主板已经面市,如精英、华硕、中凌等公司的最新主板,采用支持Pentium II的Intel 440LX、440BX芯片组,而VIA等其它芯片组厂商也推出了支持AGP的用于Pentium级MMX CPU的Socket 7主板的芯片组。

  AGP接口的显示卡一律都是3D显示卡,采用SDRAM或者RDRAM等高速显示内存,Trident的3D Image 985和875都支持AGP并具有TVOut功能。

  从原型产品所看,采用AGP并不会大幅增加显示卡的成本,但功能却强大得多,例如Trident的3D Image 985,除了芯片本身外,还有一颗MPEG2解压芯片用以播放DVD光盘,完全符合未来的多媒体电脑需要。

  关于AGP技术的讨论

  1.AGP是提高图形/视频处理速度的“特效药”

  上面已经谈到,在三维图形显示中,高速化的瓶颈是“图形纹理(Texture)处理”,它需要以100Mbps(分辨率为640×480点)~150Mbps(分辨率为800×600点)的传输速率传送大量的位图(Bitmap)数据,而目前所有的PCI总线的传输速率太低,不能满足传输速度的要求。

  在PC机中,三维图形处理大体可分为“几何变换”和“绘制着色”处理。这两种处理都由CPU承担,CPU的负荷过重。为此,采用三维图形芯片代替CPU来处理处理量很大的“绘制着色“。为了降低图形卡的成本,必须设法减小图形存储器的容量,于是,把纹理数据存储在主存上。但在目前的系统中,主存和图形存储器间是用PCI总线连接的,它的最大传输速率为133Mbps,而HDD、LAN、声卡等送往主存的数据都要通过PCI总线,而实际的传送速率远低于133Mbps。为此,推出了图形数据专用接口AGP。

  我们已经看到,AGP把主存和图形存储器直接连结起来。AGP总线宽为32位,时钟频率66MHz,能以133MHz工作,最高传输速率可高达533MBps。AGP的首要目的是将纹理数据置于主存,以减少图形存储器的容量,从而可以生产廉价、高性能的图形卡。AGP不仅用于三维图像处理,而且用于动画的再生处理。MPEG2动画数据的解压处理需要约30Mbps的传输速率,PCI总线难以胜任,而APG则游刃有余。

  在数据传输中采用AGP具有非凡的意义。现在的PCI总线是传输视频和3D图形数据的一个瓶颈。AGP的传输速率为533Mbps,是PCI的4倍。它很有希望成为消除这一瓶颈的新一代总线。

  PC机CPU芯片的霸主Intel公司在“Graphics Controller’97”中宣称,从1997年后将作为标准配置在PC中开始装备以下三种装置:与街头游戏机旗鼓相当的3D图形绘图装置;用软件再生收录在DVD-ROM中的MPEG2视频装置;符合H.320/H.324技术标准(ITU-T:国际电气联合会的电气通信标准化部门)的电视会议装置,并主张用AGP和MMX来实现上述三种装置。与此相应,与X86兼容的芯片生产厂商纷纷表示支持MMX,图形控制芯片生产厂商也都表示要适应AGP。

  MMX是处理器内部的问题,而AGP会改变PC的体系结构。为了适应AGP,必须重新设计图形控制芯片和内存/PCI控制芯片组。

  的确,AGP是提高3D图形性能的“灵丹妙药”。但是,它必须设法在提高性能的同时降低成本,以便能配置到普及价位的PC中。

  遗憾的是,AGP牺牲了通用性和扩展性。原因是在AGP上只能连接3D图形控制芯片。PC机虽然配置了3D装置所附带的图形、MPEG2解压和视频捕获等多媒体插板,但AGP的“受益者”却只有图形插板。因此,还不敢断言AGP“是新一代总线的上佳选择”。

  2.SGI“独辟蹊径”

  SGI公司提出了取代AGP的另一种方案。它于1996年11月推出了采用先进的UMA(Unified Memory Architecture,统一内存结构)的O2图形工作站。O2图形工作站是业界第一个采用统一内存结构的系统,它依*其64位MIPS RISC微处理器,将三维图形图像处理、视频、音频和压缩能力集成在一起,从而在低价位上得到了超级性能。它冲破了传统的基于总线的数据传输障碍,使得CPU图形图像处理和I/O之间均能以2.1Gbps的速度直接访问内存,并快速的传递信息。

  O2图形工作站的着眼点是尽可能降低成本,提高性能。采用UMA技术,使图形控制器、视频处理器等4种外围芯片及主处理器,可以共用主内存(SDRAM)。一般情况下,若采用UMA装置,当多个外设的访问申请都集中于主存时,则会导致性能下降。因此,在O2中,用宽256位、时钟频率为66MHz的超高速总线(最大传输速度达2.1Gbps)连接主内存,以抑制性能下降。

  UMA在3D图形绘制、视频再生、视频捕获等所有多媒体数据操作方面,发挥着积极的作用。例如,3D图形的性能很大程度上取决于内存容量和内存存取性能,原因是处理图形要频繁地存取Z缓冲器和纹理数据区。据Microsoft测算,在640×480像素的流行的彩色表示模式中,使用采用二进制滤波方式的纹理影射和24位的Z缓冲器绘制3D目标时,需要大约30Mbps的内存带宽。另外,这时仅储存Z缓冲器和纹理数据,就需要4MB的内存。如使用UMA装置,图形控制芯片把主内存作为帧缓冲器使用,那么可以不使用专用的帧缓冲器,在空主存区内还可最大限度的确保纹理数据区,这样,可望进一步提高3D图形的性能。

  UMA在视频捕获中效果尤其明显。用摄象机来获取视频,然后将其作为3D目标的纹理数据贴上,就可实时地再生视频图像。由于使用UMA机构,把捕获的数据送入主存,只要将其内存指针作为捕获数据的指针传递给图形控制芯片即可。

  3.AGP并非总线

  与UMA的考虑方法一样,只不过AGP仅是一个能使外围设备高速存取内存的技术标准。具体的说,是把3D图形芯片与内存/PCI芯片相连接,3D图形芯片可以将主存作为帧缓冲器,实现高速存取。严格地说,AGP不是总线,它仅是考虑一对一(点对点)连接的“端口”。

  因此,AGP主要是针对绘制3D图形而言。AGP的数据总线宽为32位,它有66MHz和133MHz两种工作频率,最高数据传输速率分别为266Mbps和533Mbps。与AGP对应的内存/PCI控制芯片组中备有被称之为“GART(Graphics Address Remapping Table)”的表,3D图形芯片以4KB为单位,可自由地将主存映射到本身的地址空间。映射区在主存上可以是不连续的,但必须以4KB为单位。

  另外,AGP对于MPEG2视频的再生具有积极作用。但这仅限于不用专用解压硬件而用处理器来解压MPEG2视频数据的情况。用处理器解压时,可在画面显示时,经AGP将解压后的视频数据传送给视频存储器。但是,若使用专用的MPEG2解压卡,解压后的数据则不经AGP,而是必须用PCI总线进行传送。在MPEG2规格中,主要是使用7200×576像素、30帧/秒的视频。理论上,传送解压后的数据需要36Mbps的数据传送能力。PCI的实际传送速率为30~40Mbps。若用PCI总线进行传送,画面会发生抖动。Intel推荐用主处理器来解压MPEG2视频。在AGP中,不再考虑使用MPEG解压卡。

  视频捕获卡不能连接到AGP卡上,也不能像O2那样只要把捕获数据的内存指针传递给图形控制芯片就可将其数据用于纹理。

  4.AGP具有浓厚的“补丁”色彩

  很多PC图形界的专家预言:“把O2的体系结构应用在PC中,恐怕是两三年以后的事情。”例如,有关机构已经制定出了宽64位、时钟频率为66MHz的PCI总线技术标准,它的理论数据传输速度与AGP一样,是533Mbps。另外,美国的图形标准化协会VESA(Video Electronics Stand ards Association)也已筹划制定所有接到PCI总线的外部设备共享主存的UMA机构的技术标准。如果将UMA机构装到宽64位、时钟频率为66MHz的PCI总线上,其结构就变成了使所有多媒体机构顺畅工作的O2图形工作站。

  可是,SCSI控制芯片、Modem和串/并行控制器等外部设备,并不需要高于目前PCI总线的数据传输速度,但它们必须工作在66MHz的时钟频率下。这样,制造各种这类控制芯片不仅提高了成本,而且调试复杂。但是,若在今后1~2年之内,出台替代AGP的新装置,也必须购买新机器,这样必然会妨碍PC的普及。

  5.AGP是当前切实可行的解决策略

  事实上,AGP是目前所考虑的实现PC机图形、视频处理功能最现实的解决策略。O2是SGI独家制定且具有高性能、高价位的工作站的技术标准。它和采用多家厂商产品组合而成的PC机大不相同。例如,它把主存接至数据传输速度最高达2.1Gbps的总线上,把绘制3D图形的再生机构和主存控制器综合到一个芯片中等等,这些都是只有在一个封闭的独立厂商才能实现的技术。在组合多家厂商产品的PC机中,要实现完全对应于O2的装置,确实是“勉为其难”。况且,这也与PC机视开放环境为“灵魂“的精神相左。

  相反,AGP可以在这样的设计思想下进行开发:使AGP能配置在低价位的PC中,而相应的器件(图形控制芯片)制造简单,成本低。例如,由于AGP只限于连接一个器件(主存/PCI控制芯片组除外),故此,所连接的器件容易开发,在主存/PCI控制芯片组,无须安装用于AGP仲裁的专用电路,可降低成本。实际上,所谓PCI总线是传送大量数据的瓶颈,也仅仅指的是3D图形芯片。

  AGP实质上是PCI技术标准的扩充。这也是出于简化开发设计的考虑,使其类似于PCI总线。AGP与PCI总线不同,其地址线和数据线分离(PCI是49根信号,而AGP是65根);可实现“流水线”处理,以提高实际数据传输速率;地址线和数据线分离,没有切换的“开销”,提高了随机访问主存时的性能。

  内存/PCI控制芯片组具有“事物处理”队列,用以实现流水线“处理”。图形控制芯片一旦将要求送给主存/PCI控制芯片组,就立刻释放总线。主存/PCI控制芯片组可以把多个申请命令存入队列,按优先权高低依次处理、响应。图形控制芯片在数据的等待时间里,可以受理处理结果,因而,可提高总线的整体使用效率。

  6.关于PC机总体结构的 反思

  AGP虽然是实现PC机图形视频处理功能的切实可行的解决策略,但它仍是带有浓厚“补丁”色彩的技术标准。AGP究竟能否以与投资相称的“永久性”装置“扎根落户”,还是像过去的VL-Bus那样昙花一现?目前还难以定论。从相反的观点来看,AGP是为普及3D图形的需求而出台的,如果3D图形的需求“萎缩”,它就有可能重蹈VMC(VESE Media Channe)和SFBI(Shared Frame Buppzzer Interconnect)失败的覆辙。

  将来多媒体PC机究竟怎么用,目前也无定论。Intel的预测只不过是基于用PC机玩“游戏”和MPEG2视频影像的用户将急剧增长这一判断。更重要的是,PC机应具有能玩“游戏”、玩MPEG2视频、甚至玩视频捕获的性能。由此看来,必将出现新型的应用和服务,一个与现在大不相同的、崭新的多媒体世界将会展现到我们面前。

  为了进一步普及PC,开拓巨大的家用PC市场,不应只顾眼前利益,要有长期能用的多媒体总线。时至今日,认真设计一种理想的多媒体PC的总体结构,已迫在眉睫。

免责申明:以上内容属作者个人观点,版权归原作者所有,不代表恩施知识网立场!登载此文只为提供信息参考,并不用于任何商业目的。如有侵权或内容不符,请联系我们处理,谢谢合作!
当前文章地址:https://www.esly.wang/keji/45714.html 感谢你把文章分享给有需要的朋友!
上一篇:非洲 大肚子,非洲部落男子以胖为美 下一篇:韩剧流星搞笑男明星的爱情故事「韩剧流星搞笑男明星的爱情」

文章评论