平行四边形和菱形的判定和性质「初中数学|特殊平行四边形菱形的性质与判定」
矩形区别于一般平行四边形的特殊性质主要有两个:
1、四个角都是90°;
2、对角线相等且平分。
菱形的定义和性质:
菱形是在平行四边形的前提下定义的,我们将有一组领边相等的平行四边形叫做菱形。
那么菱形都有哪些性质呢?
菱形是特殊的平行四边形,所以它具有平行四边形的所有性质,此外菱形还有以下性质:
1、菱形的四条边都相等;
2、菱形的两条
菱形是一种特殊的平行四边形。在讲菱形之前,我们首先来回顾一下矩形的相关知识点。
矩形区别于一般平行四边形的特殊性质主要有两个:
1、四个角都是90°;
2、对角线相等且平分。
菱形的定义和性质:
菱形是在平行四边形的前提下定义的,我们将有一组领边相等的平行四边形叫做菱形。
那么菱形都有哪些性质呢?
菱形是特殊的平行四边形,所以它具有平行四边形的所有性质,此外菱形还有以下性质:
1、菱形的四条边都相等;
2、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
例1:如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为?
解析:
根据菱形的性质,得出∠BAC=∠DAC,
又因为菱形的邻角互补,所以∠ABC=180°-∠BAD=60°
在菱形ABCD中,AB=AC=AD=DC
故三角形ABC=ADC,且为等边三角形
因AC=4,所以菱形ABCD的周长为4X4=16。
例2:如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为?
解析:
因为∠ADC=130°且BD为对角线,
所以∠ADO=∠CDO=65°
因为∠DAB为∠ADC的补角,
所以∠DAB=50°
因为AC平分∠DAB,所以∠OAE=∠OAB=25°
因为OE⊥AB
所以∠AOE=90°-25°=65°
我们来看下面这些思考题。
思考:
1、菱形的对角线把菱形分成四个直角三角形,它们是否全等?
2、菱形是不是轴对称图形?
3、由菱形的两条对角线的长,你能求出它的面积吗?
解析:
1、如图,根据菱形的性质,得AB=AD=BC=DC,OB=OD,OA=OC。
所以三角形AOD=AOB=BOC=DOC。
2、因为菱形是特殊的平行四边形,
所以它也是一个中心对称图形。
因为AC⊥BD,且四边相等,
所以它是轴对称图形,对称轴为AC和BD。
3、求菱形的面积,第一种方法为过AB给菱形作高DH,
S菱形ABCD=ABXDH=底X高。
第二种方法:因为菱形ABCD中三角形ABC=ADC,
所以S菱形ABCD=2XXACXOD=ACXOD=XACXBD。
其实在四边形中不止有菱形的面积为对角线乘积的一半,如果其对角线互相垂直,都可以采用这种方法。
例3:如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm,求菱形的边长和面积。
因为菱形的对角线互相垂直且平分,所以OA=AC=X16=8(cm)。
OB=BD=X12=6(cm),所以AB==10(cm)。
所以菱形的边长为10cm。
S菱形ABCD=4S三角形OAB=4XX6X8=96平方厘米。
今天的知识就学到这里啦,你都掌握了吗?
文章评论