功耗高发热大的数码时代我们靠什么散热科技硬刚大火炉
随着智能设备的蓬勃发展,对性能的要求越发严苛,让非常多普通人也体会到了功耗和发热的蓬勃发展。
其实这也是半导体发展的一个规律,每当半导体芯片的工艺制程成为瓶颈,想要提高性能最简的方法就是提高频率,而提高频率也伴随着功耗的增加。
另一方面,即便工艺制程有了突破,芯片的发热和功耗得到了缓解,但另一方面,更小的芯片面积也
“你功耗高,你发热大”本是一句硬件玩家圈子里针对某个品牌CPU的黑话,没想到今天竟然真的风水轮流转成了另一个品牌的黑料。在电子数码领域高功耗高发热似乎是一个轮回。
随着智能设备的蓬勃发展,对性能的要求越发严苛,让非常多普通人也体会到了功耗和发热的蓬勃发展。
其实这也是半导体发展的一个规律,每当半导体芯片的工艺制程成为瓶颈,想要提高性能最简的方法就是提高频率,而提高频率也伴随着功耗的增加。
另一方面,即便工艺制程有了突破,芯片的发热和功耗得到了缓解,但另一方面,更小的芯片面积也让即便不大的发热更难导出,造成了所谓的积热问题。
芯片制程工艺发展
总之,发热和散热是半导体时代永不过时的热门话题,甚至可能是一场我们身边最精彩的技术大战,我们每一个人都可能是这场大战的亲历者。
首先,我们需要明确一个前提,半导体芯片的发热是目前无法彻底解决的问题,我们也不去探讨如何降低功耗和发热,只从半导体散热的角度谈一谈人类为散热科技都做了哪些努力。
首先打开物理课本,看一看传热的三种方式:热传导、热对流、热辐射,我们一种一种来看。
热传导是通过材料微粒的微观碰撞和电子的移动来传递内部能量,我们日常接触得比较多的是固体材料的热传导,比如金属材质的铁锅要比砂锅导热更快,才能实现爆炒。
生活中很多常见的操作都包含传热的三种方式
热对流则与流体相关,最简单的例子是用锅烧水,燃气炉产生的热量通过热传导给水加热,锅底的水受热密度变小,向上流动置换掉顶部较冷密度较大的水,如此循环往复就形成了对流,让锅里的水温度趋于均匀,当然这种自然对流需要重力环境。
最后是热辐射,所有温度高于绝对零度的物体都会发出电磁波,是热能到电磁能的转换,白炽灯、取暖用的小太阳这些都是热辐射的典型例子。
小太阳取暖器是热辐射的典型案例
传热的三种形式中,热传导和热对流是人类散热科技发展中重点关注的对象,而热辐射虽然无处不在,但在电子元器件散热领域研究得的确较少。
我们以某品牌沿用了9年的原装CPU散热器为经典案例,其包含一个铝制翅片和一个风扇,在翅片主体与CPU顶盖接触的部分涂有导热硅脂。
在它工作时,热量从CPU经导热硅脂传导至铝制翅片,翅片与空气接触,进而形成对流加速散热,风扇的加入则强制空气对流提高散热效率。
整个过程中,热量的流动主要通过热传导和热对流,当然还有无处不在的热辐射,但体量较小在此就忽略不讨论,热量从CPU芯片产生最终散失到空气当中。
经典流传的原装散热器
在这个经典的CPU散热系统中,有三个环节可以加强。第一是CPU与金属翅片的接触,通常使用导热硅脂,这是一种具有一定流动性,良好导热性以及良好绝缘性的材料。
硅脂可以填补CPU顶盖与散热器表面微观的不平整,增大实际接触面积。不同的硅脂配方也有不同的性能,一般用导热系数来衡量,体现的是材料本身导热的能力。
导热硅脂具有一定的流动性,良好的导热性和绝缘性
为了追求极致,甚至有玩家直接使用导热系数十倍于硅脂的“液态金属”充当导热剂(常见硅脂的导热系数在10W/mK以下,液态金属可以达到70W/mK以上),放弃了更安全的硅脂。
液金导热剂昂贵且不安全
然而在实际应用中,导热剂的导热系数并不能真实地反映出热传导的效率,同一种导热剂在不同的几何尺寸下导热的效率也可以天差地别。
因此需要引出一个新的物理量——热阻,当热量在物体内部以热传导的方式传递时,遇到的阻力称为导热热阻。
对于热流经过的截面积不变的平板,导热热阻为L/(k*A)。其中L为平板的厚度,A为平板垂直于热流方向的截面积,k为平板材料的热导率。
可以发现,热阻与导热剂的厚度、面积和导热率相关,与前者成正比,与后两者成反比。具体到CPU散热的系统中,提高导热效率的方法除了更换导热系数更高的硅脂外,还可以把硅脂压得更薄,或者对填充界面进行抛光,增大实际的导热面积。
导热硅脂涂得越多越厚导热效果可能越差
第二个可加强的环节是散热器导热的金属,一般较为廉价的散热器会采用铝制,一方面铝的金属加工非常成熟,另一方面铝的导热系数达到237 W/mK,是铁的3倍左右。
高端一点的散热器可能会在中心增加铜柱,或者直接使用纯铜的翅片,不过需要考虑到散热器整体的重量,安装后可能会对强度不高主板带来毁灭性打击。
铜基本就是金属翅片的顶配了,其导热系数高达401 W/mK,当然还可以用导热系数429 W/mK的银,但从成本和提升来看是不太实际的。
然而,为了突破金属材料的导热极限,人类开发出了堪称外挂级的散热核心科技——热管,它将散热器的导热系数提升到了“突破天际”的100000 W/mK(无限长度理想状况下,实际工况下也可以达到10000 W/mK)。
热管原理示意图
热管是如何突破金属材料导热上限的?这里用到了一个很常见的物理现象,液体的相变,即液体蒸发吸热,凝结放热的现象。
一个典型的热管可以分为蒸发段和冷凝段,在蒸发段热管内的液体介质受热蒸发,蒸汽带走热量流向冷凝段,在冷凝段凝结成液体并释放热量,最终液体通过重力、离心力或毛细作用返回到蒸发段,完成循环。
热管横截面结构
常见的热管为铜制,外表面可能采用镀镍工艺,热管内壁由毛细多孔材料构成,填充的工作液体通常就是水或酒精,常常会被人讹传为“液冷”或“水冷”,由于移动设备芯片功耗渐涨,这种把热管当水冷的恶心营销也屡见不鲜。
或许你会有疑问,水不是要烧到100℃才会相变蒸发吗?现实中总不可能要芯片温度到100℃热管才开始工作吧?实际上热管内部一般会抽负压,低压状态下水的沸点会变低,随着温度升高,热管内的蒸汽压力变大,沸点又会升高,因此以水为工作液体的热管可以在30~250℃的范围内工作。
热管内部的金属粉末烧结吸液芯
在一些工作温度极低的环境中也可以用液氮、液氦等,相反工作温度极高的环境中可以用液态的钾、钠、锂、银等。
比如我国的青藏铁路,为了防止冻土融化,维护铁路路基的稳定性,冻土段铁轨两旁插了“铁棒”,这其实就是一种工作温度较低的热管,内部填充的工作介质是氨,全称为氨-碳钢热虹吸管。
青藏铁路轨道两旁的热管
至于前面提到的水冷或液冷,又是另一个新的发明,其原理是通过流动的液体介质(通常也是水)将热量传导至热交换器,最终通过热交换器把热量散到空气中。
从热量流动的起点和终点来看,水冷其实与常见的金属翅片散热器差别不大,但水冷的热对流效率更高,具体取决于水泵的功率和流速,加上水的热容量大,可以让水冷系统有更平稳的温度表现。
另外,水冷系统通过管路相连,热交换器的安装更为灵活,尺寸设计得更大,要比所谓的风冷系统性能更强一些。
360mm规格一体水冷巨大的热交换器和豪华的风扇配置
不论过程如何,这些散热器最终都要将热量通过热对流的方式散发到空气中,系统符合所谓的木桶效应,即最薄弱的环节决定了整体的上限。
在热管塔式散热器和水冷散热器中,最薄弱的环节其实是第三个环节,即空气的热对流,而提高这一环节最简单的方法就是增大散热翅片规模,加大风扇的功率。
所以对于CPU散热器而言,顶级的产品往往少不了暴力的风扇,优秀的风扇不仅可以让散热器的上限更好,也可以在同性能下实现更小的噪音。
工业级暴力风扇效果好,但噪音极大
以上就是关于典型散热系统中三个环节的强化,可以说是非常简化且不严谨的小科普,只希望能够帮助大家理解过程。
最后,还要说一下另一个被包装成“散热黑科技”的手机冰封背夹风扇,有的号称10秒结霜。实际上这是一种利用珀尔帖效应来制冷的技术,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象。
简单来说就是制冷片的一面制冷,相反的一面发热,同时过程中还要额外产生一定的焦耳热,总之发热量大于制冷量。一个小小的手机冰封背夹风扇,功率甚至接近10w,相当于手机芯片的最大功率,其实效率并不高。
某品牌手机冰封背夹散热器的宣传
在移动设备上或许不痛不痒,但当爱好者把这种制冷片用于台式机CPU散热时就会发现,除了低负载下的温度极低外,并不比普通的散热系统高效,要达到理想的效果,制冷功率甚至超过了芯片的热功耗,还容易产生冷凝水损害电子元器件,实在有些费力不讨好。
相信每个人都希望用上性能优秀、功耗低、发热小的电子数码设备,但受限于物理规律,它们可能构成了一个不可能三角。
但散热技术是可能有突破的,新的材料、新的发明,意味着新的希望。再不济,也可以期待一下电脑热水器一体机的出现吧
[1]孔森,温智,吴青柏,王大雁.热管在青藏高原多年冻土区高速公路应用中的适用性评价[J].中南大学学报(自然科学版),2019,50(06):1384-1391.
[2]王杰,王茜.热管科学及吸液芯研究进展回顾与展望[J].化工进展,2015,34(04):891-902.
[3]夏再忠. 导热和对流换热过程的强化与优化[D].清华大学,2001.
处理器顶盖有什么作用?我们靠什么散热科技硬刚“大火炉”?
CPU上的硅油脂是CPU的温度效应,硅油脂是冷却和隔热效应,因为CPU会在非常高的温度下工作,硅油脂它将降低温度,防止CPU耗尽和烧毁设备。
硅油脂对CPU有什么影响?
硅脂CPU效果是计算机CPU传热的条件。硅脂CPU由纤维有机材料硅凝胶主体制成磁中央处理器屏蔽材料、填充物等。硅脂热中央处理器是硅元素材料,也称为硅脂热中央处理器硅热处理器脂肪硅热处理器脂肪。在电子元件中,材料的传热,例如CPU和冷却器之间的适当充电间隙,Thierstor元素二极管、大功率三极管、面板(铜和铝)充电间隙,可以降低电子设备的工作温度。广泛用于充电数据的模型的好处信息是由智能控制器控制的硅,在高功率电气控制器和冷却器之间冷却。
由于CPU表面、吸热器底部之间存在凹口,CPU底部的吸热器间隙相对较大,如果不添加硅油脂,则表面连接较小持续的高温无法迅速释放。当CPU过热时,很容易突然出现蓝屏、重启、卡住、CPU和低车速除此之外,硅CPU具有良好的传热性能、较高的耐热性和绝缘水平。它更适合材料介质,因为它具有较高的耐热性。模型的有用性不会导致使用过程中的腐蚀,不会对金属接触产生重大影响。离心机散热材料的选择完全取决于原材料的选择,如传热、耐热、绝缘等。金属材料腐蚀、不干燥、蒸发性低。硅脂导热粘合剂使用有机化学品铜硅作为原料,此外还具有优异的耐高温性和导电性热原材料,最好的硅油脂含有大量矿物质,一些优质的硅油脂含有银、铅、锡,甚至有些提供良好的导热性。
可以在CPU上使用牙签代替油脂硅胶吗?
众所周知,牙签的主要成分是摩擦剂,例如碳酸氢钙、乳酸钙片、氢氧化镁以去除烟雾痕迹等。它还包括表面、地面混合物、保湿剂,香水、甜味剂等。一些牙签和磷化氢以更强的荧光剂的形式出现在牙齿表面,可以防止牙齿腐烂。荧光是腐蚀性的。CPU表面的腐蚀如果长期使用,中央热泵处理是一种并非不可能的规则。此外,牙签是导电的。不合理的擦拭或长期使用可能会导致短路故障因此,不建议使用牙龈代替硅脂CPU。事实上,多年前,人们测试过牙龈代替硅脂CPU。结果如何?起初,这是出乎意料的,但最终,牙签的性质出现了。
文章评论