当前位置:恩施知识网 > 情感人生 > 正文

为什么地球选择了碳基生命而不是硅基生命呢,为什么碳基生命和硅基生命是死敌

请问:地球上的碳元素多还是硅元素多呢?如果你的回答是硅元素更多,那就恭喜你答对了。实际上,地球上的硅元素可能比你想象中的还要多,根据科学家的估算,地球上碳元素的总质量大概只有硅元素的千分之一。
那么问题就来了,既然如此,为什么地球选择了碳基生命,而不是硅基生命呢?
正如我们所知,化学反应是生命的基础,因此要搞清楚这个问题,我们需要从元素的化学性质来讲起。
如上图所示,在元素周期表中,排在最右边那一列的所有元素的化学性质都非常稳定,在常温常压下,它们都是单原子气体,极难发生化学

请问:地球上的碳元素多还是硅元素多呢?如果你的回答是硅元素更多,那就恭喜你答对了。实际上,地球上的硅元素可能比你想象中的还要多,根据科学家的估算,地球上碳元素的总质量大概只有硅元素的千分之一。

那么问题就来了,既然如此,为什么地球选择了碳基生命,而不是硅基生命呢?

正如我们所知,化学反应是生命的基础,因此要搞清楚这个问题,我们需要从元素的化学性质来讲起。

如上图所示,在元素周期表中,排在最右边那一列的所有元素的化学性质都非常稳定,在常温常压下,它们都是单原子气体,极难发生化学反应,因此它们就被称为惰性元素(或者惰性气体)。

从原子结构来看,这些元素除了2号元素氦(氦只有两个电子)之外,其余的6种的最外层的电子数量都是8个,例如10号元素氖(Ne)是这样的:

18号元素氩(Ar)是这样的:

无论对于哪一种元素来讲,它们都是“天生”就趋向于稳定,所以如果有机会的话,元素周期表中的那些非惰性元素就会趋向于让自己也形成和惰性元素一样的原子结构,假如一个原子最外层电子的数量较少,那么它就趋向于送走其最外层的电子,其失去电子的能力就比较强,比如说11号元素钠(Na)的原子结构是这样的:

可以看到,钠原子最外层只有一个电子,它只需要将这个电子送走,其第二层电子就可以变成最外层,而这一层的电子数量为8,它就达到了稳定。

反过来讲,如果一个原子最外层电子的数量较多,那么它就趋向于从外界得到一个电子,其得到电子的能力就比较强,比如说17号元素氯(Cl)的原子结构是这样的:

可以看到,氯原子最外层有7个电子,它只需要再获得一个电子,就可以达到稳定。

正因为如此,钠元素和氯元素的化学性质都非常活泼,它们中的一个天天想送走一个电子,另一个则随时都在琢磨在哪里去得到一个电子,当这俩遇到一起的时候,当然是一拍即合,一个愉快地送,一个开心地拿。

在此之后,钠原子因为失去一个电子就带上了正电,而氯原子却因为得到一个电子而带上了负电,于是它们就紧紧地结合在了一起,形成了非常稳定的氯化钠分子(NaCl,也就是食盐的主要成分)。

钠和氯的这种结合方式被称为“离子键”,除了这种“一个送、一个拿”的结合方式以外,原子之间其实还有另一种方式来达到稳定的效果,那就是与对方共享自己的电子。比如说8号元素氧(O)长这样:

可以看到,氧原子最外层有6个电子,它还需要再获得两个电子才可以达到稳定。

为了方便描述,我们不妨用一下拟人的手法,即:对于一个氧原子来讲,假如它的周围还有一个氧原子的话,它就会与其商量:“你看,我差两个电子,你也差两个电子,不如我们各自拿出两个电子来共享,这样我们自己剩下的4个电子,再加上4个共享的电子,不就成为8个电子的稳定结构吗?”另一个氧原子想了一下,觉得确实是这么回事,于是这两个氧原子就通过共享的电子结合成了氧气分子(O2)。

这种结合方式被称为“共价键”,其实前面提到的氯原子也可以通过这种方式与另一个氯原子一起结合成氯气,值得注意的是,不同种类的元素也可以通过“共价键”来结合,比如说一个氧原子可以通过“共价键”分别与两个氢原子共享电子,这样氧原子最外层就有了8个电子,而两个氢原子的原子结构也都变成了与氦元素一样的两个电子,这样就形成了稳定的一氧化二氢(H2O),也就是水分子。

有了以上的知识之后,我们再来看看碳元素(C)的原子结构:

碳元素是6号元素,其最外层有4个电子,这就很有意思了,因为无论是得到4个电子,还是失去4个电子,碳原子都可以达到稳定状态,其失去电子的能力和得到电子的能力都是一样的,所以除了少数的情况之外,碳原子一般都是形成“共价键”。

这无疑赋予了碳原子形成复杂化合物的能力,比如说氢原子需要共享一个电子,碳原子就给它一个,氧原子需要共享两个电子,碳原子就给它两个,而它剩下的电子还可以与其他的碳原子共享,其他碳原子又可以在与更多的原子结合的同时,再通过“共价键”连上另一个碳原子……

为了方便理解,我们不妨将碳原子最外层的电子比喻成4只“手”,大量的碳原子手拉着手,就可以形成长链、环状、网状、层状等等复杂的结构,而在这些结构中,几乎每一个碳原子都有“空闲”的手来拉着其他的元素,这样一来,就极大地提升了化合物的复杂性和多样性。

我们知道,有机化合物是构成地球上所有生命的物质基础,实际上,这些有机化合物全部都是以“手拉着手”的碳原子为“骨架”的复杂化合物,正是因为如此,我们才将地球上所有的生命(包括我们人类自己)都称为碳基生命,由此可见,所谓的碳基生命并不是指生命有机体的碳含量特别高。

好的,现在我们再来看看硅元素(Si)的原子结构:

硅元素是14号元素,在元素周期表中正好位于碳元素的下方,硅原子的最外层也有4个电子,而这也就意味着,硅原子也像碳原子一样拥有4只“手”,应该也拥有形成复杂化合物的能力。

正是因为如此,才有了硅基生命这种说法,简单来讲就是,如果构成某种生命的基础物质全部都是以“手拉着手”的硅原子为“骨架”的复杂化合物,那么这种生命就是硅基生命。

然而在地球上,硅根本就无法像碳那样形成具有高度复杂性和多样性的化合物,其根本原因就是硅原子比碳原子多了一个电子层,这就使得其对最外层的4个电子的控制力远低于碳原子,也就是说,尽管硅原子也有4只“手”,但这些“手”的力量天生就比碳原子弱。

这就导致了硅原子与绝大多数元素的结合都非常不稳定,比如说硅和氢的化合物甲硅烷(分子式为SiH4,由1个硅原子和4个氢原子组成) ,即便在常温常压下,也会在空气中直接发生自燃。

碳原子之所以能够形成长链,有一个重要的原因就是碳原子可以形成双键甚至是三键,我们可以简单地理解为,碳原子可以同时伸出两只手或者三只手去拉住对方。

而在地球上的自然环境中,硅原子却很难形成双键,因此硅原子形成的长链结构就极容易断裂,如此一来,也就无法形成以“手拉着手”的硅原子为“骨架”的复杂化合物了。

除此之外,氧和硅的结合能力又相对很强,这就导致了硅的化学反应强烈倾向于生成二氧化硅和硅酸盐,并在这些物质内部形成一种被称为“硅氧四面体”的结构(如下图所示)。

在地球上的自然环境中,二氧化硅和硅酸盐一旦生成就非常稳定,极难与其他物质发生化学反应,所以虽然地球上的硅比碳多得多,但是它们只是以无机物的形式大量存在,比如说地球上很多岩石(如花岗岩)的主要成分都是硅酸盐,而我们常见的沙子的主要成分则是二氧化硅。

正是因为上述原因,地球才选择了碳基生命,而不是硅基生命。当然了,地球上没有硅基生命并不能说明宇宙中就不可能存在硅基生命,从理论上来讲,在特定的自然环境中,硅基生命是有可能存在的。如果真是这样的话,那硅基生命长什么样呢?我们接着看。

在压强足够高的条件下,硅原子也是可以形成双键的,而在低温的环境中,硅与非氧元素形成的化合物可以保持稳定,除此之外,我们还要排除氧和硅的结合问题,因此在高压、低温并且缺氧的强还原性环境中,就可能形成以“手拉着手”的硅原子为“骨架”的复杂化合物,进而演化出生命。

这样的条件可以出现在那些低温的星球上,在低温的条件下,氢、氦、氮、甲烷等等物质都能够以液态存在,而如果这些液体足够多,就可以形成巨大的海洋,在这些海洋的底部,就形成了高压、低温并且缺氧的强还原性环境。

不过由于低温下的化学反应通常都不够活泼,不足以支持高级生命体的活动,因此就算在这种条件下存在硅基生命,它们也应该只是一些简单的硅基微生物。

另一方面来讲,由于氧和硅的结合能力很强,因此如果用氧原子来“搭桥”的话,就可以形成“Si-O-Si-O-Si……”这样的长链结构,而足够高的温度则可以让“硅氧链”避免出现上述的“硅氧四面体”结构,进而使得“硅氧链”出现这样的情况:

这就相当于硅原子就有了“空闲”的手来拉着其他的元素,在此基础上,如果再加上高压,就可能会形成复杂度和多样性都足够高的化合物,进而为演化出生命提供了物质基础。

在宇宙中,如果一颗拥有岩石表面的行星的质量足够大、大气层足够厚、距离其主恒星足够近,其星球表面就可以存在高温高压的环境,也就是说,在这样的星球上就有可能存在复杂的硅基生命。

实际上,早在19世纪末,就有科学家提出高温环境中可能会存在硅基生命,在随后的日子里,这种猜测得到了一定程度的认同,根据人们的设想,这样的硅基生命看上去就像是某种晶体,拥有透明或半透明的外观。

(↑科幻作品中的硅基生命)

当然了,以上所述的硅基生命都只是理论上的推测而已,实际上,除了地球上的碳基生命以外,我们从未在宇宙中发现过任何形式的生命,总而言之,宇宙中还有太多的奥秘等待着我们去探索。

好了,今天我们就先讲到这里,欢迎大家关注我们,我们下次再见。

(本文部分图片来自网络,如有侵权请与作者联系删除)

为什么地球选择了碳基生命而不是硅基生命呢,为什么碳基生命和硅基生命是死敌

深度长文:为什么地球生命只选择碳基生命,而不是硅基生命呢?

本期我们就来啃啃这块硬骨头。先说说, 大自然为什么让地球生命自然选择碳基生命?

大家知道,自从化学尤其是分子生物学快速发展以来,科学家们发现:地球上所有生命形态和物种,无外乎都是由25种化学元素构成的。

一个典型的生物细胞比如人体细胞的总质量当中,有96%是由氧(65%)、碳(18%)、氢(10%)、氮(3%)这4种主要元素构成的,其余的则是由少量其他元素构成的,比如说钙、磷、钾、硫、钠、氯、镁、铁等等。

有人马上会问,人体总质量不是氧元素占了大部分吗?高达65%!我们不是以氧为基础的生命形态吗? 为什么我们不叫氧基生命,而叫碳基生命呢?

是这样的,包括人类在内的所有地球生命,活体细胞中多数的氧元素,其实是以水的形式存在的,含在水分子H2O里了。

然而,对细胞结构和功能起关键作用的,却是另外一种元素——这就是碳。所以呢,我们说地球生命都是以碳元素为基础的,于是就叫 碳基生命 Carbon-Based Life。

最关键的问题来了, 为啥生命选择的是碳元素,而不是其他元素呢?

要想回答这个问题,我们就得进入粒子尺度下,看看碳元素的特点。凡是学过点化学的都知道,分子中的原子,都是通过化学键相互连接在一起的。


什么?忘了啥是化学键啦?化学键,就是一种粒子间的吸引力,让原子、分子透过这种吸引力,组成——我们宏观尺度下看得见的物质。

文科生不妨 把化学键想象成每一种元素的手臂 。有了这种手和胳膊——化学键,原子之间就可以手拉手,勾勾搭搭混迹天涯了。

不同元素拥有手臂的数量也不同。 像氢原子只有一只手,这就意味着一次只能跟另一个原子手拉手。像氧原子就有两只手,意味着同时能跟两个原子勾勾搭搭。

像碳原子竟有四只手,这就意味着: 它最多可以同时跟4个原子勾勾搭搭 。这就有意思了,想想看每个碳原子都有四只手,如果相互连接一起,上下左右前后,手拉手成三维结构,就会创造出千差万别的各种碳骨架——这就成了各种各样有机化合物的基础。

科学家把这种含碳的分子统称为 有机分子 ,从最简单的有机分子(碳氢化合物甲烷),一直到复杂多样的高分子有机物(DNA分子),这就为碳基生命的形成,提供了丰富的物质基础。

就像搭建乐高积木一样,大自然通过神奇的碳元素,搭建出丰富多彩的碳基生命。

——这一过程就是壮丽的 地球生命演化史 ,也是大自然本身 自然选择生命形态的唯一路径 。也是迄今为止 人类已知的唯一路径 。

有人可能会问:碳原子不过区区四只手,比碳原子手多的原子,不是更能演绎出千奇百怪的分子结构吗?千手观音,不是更精彩嘛?!

碳与各元素之间的键合关系

问题是,粒子尺度下的三维世界,并非手臂越多就越好。越重的元素虽然手臂越多,复杂度是足够了,但稳定性却远远不行。 化学世界拼的不是量,而是巧。

要知道,碳元素是所有元素中化合物种类最多的,目前已知的纯有机化合物就有近1000万种,但这还只是理论上存在化合物世界的冰山一角而已。

碳的同素异形体结构:钻石(a)、石墨(b)、蓝丝黛尔石、富勒烯(C60(d)、C540(e)、C70(f))无定形碳(g)、碳纳米管(h)

再看看,碳元素的异形(学名叫同素异形体):从极软的石墨,到极硬的钻石,都是碳元素的百变造型。

再看看,碳元素的丰度(丰富程度),在地球地壳上排名第15位,在宇宙中排名更靠前,竟然排在第四。所以毫不夸张地说, 碳是地球生命的基石,是碳基生命的化学根本 。


此处,一定有人会跳出来质疑:要是论元素丰度,硅元素可比碳元素丰富多了,在地球地壳上,硅是碳的1000倍!硅基文明早晚会替代碳基文明,占领地球世界,甚至统治全宇宙的!

对于这种深陷科幻思维,搞不清科幻世界与真实世界区别的人,我恰恰要反问: 既然硅元素丰度如此高,像地球这种固态岩质行星在宇宙更是数不清,那为啥还没有演化出硅基生命呢?大自然为何不青睐硅元素——诞生硅基生命(Silicon-Based Life),而是自然选择碳元素——演化出碳基生命?

针对这种论智商的问题,我还是自问自答吧。


假设我们充当一把大自然的角色,硬要扶持硅元素当家作主,成为硅基生命的主人,世界将会怎样?

①回到微观尺度下,先说说除了碳元素外,地球天然存在的92种元素王国里,只有硅元素跟碳元素一样,拥有四只手——能够同时形成4个化学键,但 硅元素这四只手天生不给力 ,明显没有碳元素四只手臂,粗壮有力。

所以呢,以硅元素为基础的复杂分子很容易断裂,以至于脆弱到——没法形成活体细胞结构的程度。虽说平时勾勾搭搭也有点感情,一旦有点风吹草动,甩手散伙,那是必然。

②硅元素另一个缺陷就是,通常只能伸出一只手臂,不能同时伸出双臂,给其他原子一个温暖的熊抱。 硅元素这种形不成双键的化学关系, 自然人缘不够好,能够参与的化学反应就很少,大多数趴体都不带它玩。

结果可想而知,不仅找不到女票,就连男票也找不到,更别提什么繁衍下一代了,硅基生命还能延续?

③人家碳元素就跟大白似的,不仅人缘好,而且百变真身。上天入地,去哪儿都行!气态变成二氧化碳,固态变成干冰。相反,再瞧瞧硅元素, 最常见的模样就是二氧化硅 ,纯度高点的叫石英、水晶,不纯的都是些呆头呆脑的石头嘛。

能从石头缝里蹦出来,创世以来,唯有孙猴儿一个孤例。你还指望能有什么样的硅基生命?

艺术家笔下的外星生物——硅基生物。

说了这么多硅元素的硬伤,恐怕有人要说我是个 碳基沙文主义者 。

还可能有人搬出鼎鼎有名的科学家 卡尔·萨根 ——对此颇有微词的观点来:「碳基生命唯一论、中心论,很可能大大限制了人类对外星生命的 探索 和想象。」

甚至,有人会搬出一门名叫「 假定型生物化学 」Hypothetical types of biochemistry的学科,而且附上——瞧瞧,这可是正经八百的科学家正在严肃研究的课题呀!看你还敢无视!

这门学科主要是指,替代现有碳基生命为中心的生物化学理论,提出若干种生物化学形式和生命形态,比如 硅基生命、氨基生命、硼基生命 等。

根据假定型生物化学理论,艺术家绘制出的含有氨基生命的行星外表。

作为一种理论甚至称其为科学理论,我当然双手赞同,这是学术自由的基本准则嘛。只要有能力有条件搞就好了。说不准,万一搞成了呢!免得被那篇来自美国国家研究委员会NRC的报告——不幸言中咋办?那份报告称: 「没有什么会比这更悲催的了……在太空 探索 中人类遇到了外星生命,却认不出来它们!」

我当然也不想看到这种结果。但我要强调的是,理论就是理论,凡是未被实证的理论都还只是理论,不能进入科学认知体系之内,更不能拿来当作科学四处说事。

就算是科学家在以科研态度、科学思维建构出来的一套科学理论,也只能算作是理论——一种未经验证的假说而已,当然进不了科学殿堂。

总之一句话, 碳基生命是人类科学认知体系当中唯一的生命形态。

而其他硅基生命、氨基生命等,目前只是一种假说。

至于科幻、玄幻、宗教、迷信层面所说的那些生命形式,在各自地盘穿越、飞舞,对我来说都无所谓——只要别硬掺乎到科普里就行。

为什么地球选择了碳基生命而不是硅基生命呢,为什么碳基生命和硅基生命是死敌

地球选择了碳基生命,为什么没选择硅基生命?

因为碳元素所组成的东西远远比硅多很多。在大体上来讲,碳元素能够保留地球上更多的生物。
免责申明:以上内容属作者个人观点,版权归原作者所有,不代表恩施知识网立场!登载此文只为提供信息参考,并不用于任何商业目的。如有侵权或内容不符,请联系我们处理,谢谢合作!
当前文章地址:https://www.esly.wang/qinggang/52209.html 感谢你把文章分享给有需要的朋友!
上一篇:开启第三只眼的音波,开第三眼激活松果体 下一篇:电子眼有4个漏洞卡点通行不会被拍这些谣言你听过哪个

文章评论