当前位置:恩施知识网 > 生活常识 > 正文

什么是矩阵的秩序,矩阵秩的定义是什么

什么是矩阵的秩?
前面我们介绍了矩阵的基本概念,请参见矩阵的基本知识。 也讲了高斯消元法解线性方程组,请参考用高斯消元法解决线性系统问题。
本文谈谈矩阵秩的概念,先看一个例题:解下列线性方程组的解,
我们按高斯消元法,首先列出增广矩阵:
第2行减去第1行的两倍,第3行减去第1行得到:
现在第三行减去第二行(注意只能先消去下面的行),然后把第二行乘以1/3(第二行的操作不能让别的行对其运算,否则再乘以1/3没有意义):
这是行阶梯形,我们通过把第二

什么是矩阵的秩?

前面我们介绍了矩阵的基本概念,请参见矩阵的基本知识。 也讲了高斯消元法解线性方程组,请参考用高斯消元法解决线性系统问题。

本文谈谈矩阵秩的概念,先看一个例题:解下列线性方程组的解,

我们按高斯消元法,首先列出增广矩阵:

第2行减去第1行的两倍,第3行减去第1行得到:

现在第三行减去第二行(注意只能先消去下面的行),然后把第二行乘以1/3(第二行的操作不能让别的行对其运算,否则再乘以1/3没有意义):

这是行阶梯形,我们通过把第二行加到第一行来把它化简(只能从下往上运算):

相应的简化方程组为:

首非零元为1在第1列和第3列,所以对应的变量和被称为首变量(主要的变量),因为矩阵是行最简阶梯形,所以这些方程可以用系数非1变量和来解首变量,即把,看成自由变量。更准确地说,在这个例子中,我们设 = s和 = t,其中s和t是任意的,所以这些方程变成

最后方程组的解用参数s, t表示变成:

由于s, t是任意数,所以这个方程组有无穷解,上述过程中我们用了反代方法,即把x4当做已知的参数t, 然后带入第三个方程,依次类推,得出每个变量,这种方法叫反代法。

那么问题是什么时候方程组有唯一解,什么时候方程组有无数解,什么时候方程无解?这就要引出秩(rank)的概念。

秩的定义:矩阵A的秩是任意矩阵A经过行变换化成阶梯矩阵后,行的首元为1的个数。

例题:求矩阵A的秩。

解:按照高斯消元法,将矩阵A化为行的阶梯矩阵有,

因为行的阶梯矩阵首元为1共有两个,所以r=2.

假设矩阵A是mxn矩阵, 即有m行和n列。那么r≤m是因为首元1位于不同的行中,同理r≤n,是因为首元1位于不同的列中。此外, 秩对判断方程组的解有很好的应用。

下面给出方程组解的判定。

定理:假设一个包含n个变量的m个方程的所构成的方程组是有解的,并且其增广矩阵的秩是r, 那么:

1.解的集合恰好包含n - r个参数。

2.如果r

3.如果r = n,方程组有唯一解。

证明:增广矩阵的秩是r的事实意味着正好有r个主变量(系数为1的变量),因此正好有n - r个非主变量。这些非主元变量都作为参数赋值,所以解的集合恰好包含n - r个参数。因此,如果r

这个定理有三个含义:

1. 没有解的情况。当一行出现[ 0 0··· 0 1 ]以行梯队形式出现时,就会发生这种情况。这是方程组无解的情况。

2. 唯一的解。当每个变量都是主元变量时,就会发生这种情况。

3.无穷多的解。当系统是一致的并且至少有一个非主元变量时,就会发生这种情况,因此至少有一个参数。

最后再看一个例子,解方程组:

解:增广矩阵经过初级行变换为:

这样意味着方程组变换为:

这是一个与原方程组等效的方程组,但最后一个意味着0x 0y 0z = −3, 所以无解。

总结:若解一个线性方程组有下列步骤,

做方程组系数和常量组成的增广矩阵,将增广矩阵化简为行阶梯矩阵,观察最后一行或其他行有无出现无解的行,若有则方程组无解,若有解利用上面解的判定定理确定解的个数,若有唯一解,可直接求出,若有无穷解,用参数形式解出,此时参数的个数为n-r, 即有n-r个独立的变量参数。

什么是矩阵的秩序,矩阵秩的定义是什么

什么是矩阵的秩

第一个角度,也就是书本上的定义,矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。

对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。

第二个角度,如果我们把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。

第三个角度,是从线性方程组的角度来给出的,我们可以把秩理解为一种约束,因为方程我们就可以理解为约束,当我们把矩阵看成齐次线性方程组的系数的时候,矩阵的秩就是这个方程组里真正存在的方程的个数。

虽然写出了很多个方程,但有一些是没有用的,可以由其他方程来表示的,这些没用的消去之后剩下的真正的约束的个数就是这个矩阵的秩。

第四个角度,将矩阵看成由一个个向量放在一起拼成的,这个秩就是向量组中独立的向量的个数,其实和上述方程组的角度是差不多的。

扩展资料

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

参考资料来源:百度百科-矩阵的秩

什么是矩阵的秩序,矩阵秩的定义是什么

矩阵的秩是什么意思?

矩阵的秩

矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,

如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

拓展资料;

变化规律

(1) 转置后秩不变

(2)r(A)<=min(m,n),A是m*n型矩阵

(3)r(kA)=r(A),k不等于0

(4)r(A)=0 <=> A=0

(5)r(A+B)<=r(A)+r(B)

(6)r(AB)<=min(r(A),r(B))

(7)r(A)+r(B)-n<=r(AB)

免责申明:以上内容属作者个人观点,版权归原作者所有,不代表恩施知识网立场!登载此文只为提供信息参考,并不用于任何商业目的。如有侵权或内容不符,请联系我们处理,谢谢合作!
当前文章地址:https://www.esly.wang/shenghuo/21268.html 感谢你把文章分享给有需要的朋友!
上一篇:今天是腊八节,要喝粥,腊八节除了喝粥还有什么习俗 下一篇:肝吃多了会中毒吗,致肝毒的食物一览

文章评论