温度背后还有物理史上的经典大案
国家“三有”保护动物戴胜鸟 | 图虫
温度这个概念同样如此。我们知道怎么描述:冷、热;知道它的单位:开尔文、摄氏度或者华氏度;知道如何去测量:水银温度计或者红外测温仪。但温度的本质是什么?
只有理解了温度这个概念的本质——它描述了物质内部原子、分子等粒子的平均动能——才能理解温度为什么会有下限值,也就是我们所说的绝对零度。
著名物理学家理查德.费曼曾说:“就算你知道一种鸟在所有语言中的名字,仍可能对其一无所知。我很早就明白知道一个东西的名字和真正的了解一个东西并不是一回事。”
国家“三有”保护动物戴胜鸟 | 图虫
温度这个概念同样如此。我们知道怎么描述:冷、热;知道它的单位:开尔文、摄氏度或者华氏度;知道如何去测量:水银温度计或者红外测温仪。但温度的本质是什么?
只有理解了温度这个概念的本质——它描述了物质内部原子、分子等粒子的平均动能——才能理解温度为什么会有下限值,也就是我们所说的绝对零度。
在实际操作中,它是由理想气体状态方程外推得到的。所谓理想气体,是研究气体性质的一个物理模型,其性质满足如下定律:
- 查理定律:一定质量一定体积的气体,其压强随温度呈线性变化;
- 玻意耳-马略特定律:在定量定温下,理想气体的体积与气体的压强成反比;
- 盖·吕萨定律:一定质量的气体,在压强不变的情况下,它的体积跟热力学温度成正比。
- 阿伏加德罗定律:同温同压下,相同体积的任何气体含有相同的分子数。
在这些定律的基础之上,我们可以写出理想气体的状态方程,定量地描述理想气体的压强、体积以及温度之间的关系——pV=nRT。式中:p为压强(单位是Pa),V为气体体积(单位是m³),T为热力学温度(单位是K),n为气体的物质的量(单位是mol),R为摩尔气体常数,在国际单位制中R=8.31J/(mol・K)。
通过实验测量气体的体积随温度变化的关系,再将所得数据外推至气体体积为零时对应的温度值,就得到了绝对零度,这个值约为-273.15℃。
除了借助逻辑外推实验数据,换个角度,既然温度描述了物质内部原子、分子等粒子的平均动能,那么也可以把绝对零度说成是“理想气体分子停止运动时的温度”。那么,理解了温度的这种性质,就会明白,温度是存在下限值的。如果有人跟你说,零下400℃,你肯定要想想对方是不是在骗你。
上述推导,也是《张朝阳的物理课》直播中讲解的思路。从去年11月5日至今,《张朝阳的物理课》已直播十七期。在第一、二课中,张朝阳科普了“力”和“速度”,算出中国空间站每日绕地飞行圈数;第三、四课和“振动”相关,科普可见光的基本知识。第五、六课引发了关于音速和温度的大讨论。在第七、八、九课重温经典力学的两朵乌云;第十、十一课重点回顾黑体辐射曲线及其应用;第十二、十三、十四课尝试进入爱因斯坦的思想世界,推导出著名的公式“E=mc²”,并论证钟慢尺缩效应。第十五课讲解了原子的结构和原子核的衰变。第十六课意在讨论光的波粒二象性,初探量子力学。第十七课则着重探讨了康普顿散射和海森堡不确定性原理。伴随着他在“直播白板”上一个又一个的手写公式,背后的搜狐视频平台,也从直播综艺、活动直播、切入到了知识直播赛道。
先不讨论张老师教得怎么样,至少观众乐见其成。毕竟,观众不缺一位带货的主播,但大众永远需要知识的普及。若知识被束之高阁则无意义。直播这种拉近受众与知识的行为显然应当被鼓励。
事实也证明了这种判断:自去年疫情爆发以来,知识类直播呈现出了爆发式增长。这背后有两点原因。一是始于消费和娱乐的直播,经过数年的发展终究迎来了瓶颈期,各种带货主播你方唱罢我登场,但同质化却相对严重,在每天“过饱和”信息的轰炸下,观众却已经提前进入了审美疲劳;二是疫情的爆发使人们意识到科学知识的重要性,同时各种在线学习也进一步扩大了观众对“知识直播”的需求。
搜狐视频直播间也早早做出了布局。一方面对知识类播主有扶持;另一方面增加了直播间新功能,“有黑板,可以打赏、提问题,完全打造课堂的环境。”据介绍,未来还会有开小课、付费课等,激励播主传播知识,让播主不必靠爱发电。在知识直播领域,目前搜狐视频已聚集了一批在专业领域极具影响力的专家学者,分享包括汽车、美妆、情感心理、文化教育、房地产、健康、美食、母婴亲子等专业知识内容,涵盖大众衣食住行的方方面面。
知识直播,是张朝阳的个人兴趣使然,也是搜狐在直播大势之下做出的选择。张朝阳称,直播讲物理课,一部分原因是“为了配合搜狐视频做知识直播平台的战略布局”。
张朝阳对这条赛道充满信心。“我觉得科学知识,这一两百年,有大量的积累,作为一个现代人的话,真的是有义务去关注,再加上一个好奇心,应该去了解一下。”
那么,在人类目前这一两百年积累的大量科学知识中,为什么张朝阳直播选择了讲物理?因为这正是物理迷人的地方:它既强调逻辑性,却又强调体验和感知。
物理学独到的迷人之处
理查德.费曼还有一句名言:Physics is to Math is what sex is to masturbation. (物理之于数学就像性爱之于手淫)。这位曾经被按摩院请去画裸体画、偷偷打开放着原子弹机密文件的保险箱、在巴西桑巴乐团担任鼓手的诺贝尔奖得主,用这句话表明了一种观点:与数学相比,物理更注重人的体验和感受。
理查德.费曼
如何让物理规律被“感受”,也成为了区分物理学家伟大与优秀的标准。
费曼著名的O型环演示实验很好地说明了这一点。1986年,美国“挑战者”号航天飞机失事,费曼受委托调查事故原因。后来查明,事故原因是低温下用于密封的O型橡胶圈在低温下失去了弹性。然而,与其他专家用一大堆专业术语来解释问题不同,费曼只是简单地告诉会场的负责人:“请给我一杯冰水。”然后掏出一把刚从五金店买来的尖嘴钳,将一个航天飞机推进器上使用的橡皮环,用尖嘴钳夹住塞进冰水里。5分钟后,他拿出冻硬的橡皮环,松开钳子说:“发射当天的低气温使橡皮环失去膨胀性,导致推进器燃料泄漏,这就是问题的关键。”
费曼在国会作证,说明O型环在低温下失去弹性| youtube.com
费曼用一个简单而优雅的实验,不仅说明了事故的原因,更让观众有了直观的感受。在搜狐视频直播间,《张朝阳的物理课》也是同样的思路:让观众“感受”到物理知识,而非单纯地摆公式。
张朝阳使用“直播白板”,推导理想气体状态方程 | 《张朝阳物理课》
从第一堂课亲手计算出了中国空间站每日绕地球飞过的圈数,到后面分析微波炉加热食物的原理,张朝阳在直播时会精心选择生活中的切入点,一方面帮助网友“透过现象看本质”,另一方面也是优化物理知识的体验。
当然,作为一门严谨的科学,物理是经验(感受)的,但又是超脱于经验(感受)的。物理的易感知性意味着很多物理规律会跟我们的生活经验相印证,但借助逻辑的力量将这种经验外推到极限条件时又会出现矛盾。在12月5日的第九期《张朝阳的物理课》上,张朝阳便通过物理史上的经典案例——黑体辐射——展示了这种矛盾性。
所谓“天空中飘浮着两朵乌云”
说回到温度,高温物体会以电磁波的形式向外辐射热量,也就是我们俗称的热辐射。在研究热辐射时,物理学家们定义了一个理想化的物体——黑体,并以此作为热辐射研究的标准物体。它能够完全吸收外来的全部电磁辐射,并且不会有任何的反射与透射。与此同时,黑体也会把其吸收到的能量以电磁波的形式发射出来,且在各个波段的比例是不同的。黑体的热辐射称为黑体辐射。随着温度的升高,黑体所辐射出来的电磁波的频谱分布也会发生改变。
然而,在刚刚跨入20世纪的第一年,著名物理学家、“热力学之父”——开尔文勋爵在英国皇家学会上发表演讲,认为在物理学晴朗天空的远处,还有两朵小小的、令人不安的乌云。演讲稿的修订版后来发表于1901年7月出版的 《哲学杂志》 和 《科学杂志》合刊上,并取名《在热和光动力理论上空的十九世纪乌云》。
这两朵乌云中的一朵,便是经典物理学无法解释的黑体辐射“紫外灾难”。因为,根据经典力学所推演出的用于计算黑体辐射强度的瑞利-金斯定律,虽然在低频段与实验结果吻合得很好,但在高频段出现了严重偏离,其在辐射频率升高时计算结果会趋向于无穷大。
这背后的本质,实际上是因为人们将经典物理学的结论借助逻辑外推时,出现了矛盾。因为经典物理学假设物质和能量无限可分,然而后来的量子力学却表明,能量有一个最小量,其他任何能量都等于这个最小能量的倍数。
黑体辐射谱以及颜色随温度的变化 | 李学苑
普朗克基于这个假设,修正了黑体辐射公式,使之在高频段也与实验数据吻合。然而,一开始他引入这个能量的最小量只是单纯想从数学上解决黑体辐射问题,没想到却开启了一场量子风暴。风暴过后,经典物理学中那个连续的、无限可分的世界不复存在。空间有最小尺度、能量有最小尺度,世界仿佛变成了《我的世界》一般,有了像素。换句话说,世界是量子的。
从感受中来 到理性中去
在搜狐视频直播间,张朝阳从能量均分原理出发,通过对简谐运动、阻尼振动、电场辐射以及辐射阻尼的研究,带着网友顺利推演出“瑞利-金斯公式”,重演了这一经典过程,并介绍了普朗克的修正公式,从而带领网友触摸到了量子力学的大门。
观察生活现象 解释背后原理 推导演算公式,结合目前直播的物理课可以看出,《张朝阳的物理课》是从日常现象引入,帮助网友理解现象,提升兴趣,再“透过现象看本质”,解释知识点,推演过程,反过来解决生活中的问题。据了解,在后续课程中,张朝阳还将会通过网友日常中比较熟悉的话题,深入浅出,解释生活现象,探寻物质世界的本源,并借此激发科学学习的热潮。
张朝阳计算比热容比γ | 《张朝阳物理课》
这般费力的推演,与其说张朝阳在直播间讲解物理知识,不如说他更想展现一种物理学的思维:用逻辑去探究物质背后的规律。这种规律从感受中来,到理性中去。物理学既不是单纯的“理”,也不是单纯的“感”。它强调逻辑,但也很有趣。它源于生活,跟体验息息相关;却又超越生活,需要理性演绎。所有的一切,不管是搜狐视频直播间白板上那些手写的公式,又或者张朝阳在纸上画的简单示意图,背后其实都是对生活的热爱、好奇以及赤子之心。
最后也提个醒,《张朝阳的物理课》会于每周周五、周日12时在搜狐视频直播。
什么是经典物理学上空的两朵乌云?
上节课我们说了,经典物理学的辉煌成就,也说了牛顿到底有多牛,最后我们还说了,在19世纪末,也就是20世纪初,经典物理学大厦上空飘着两朵乌云,远处还能隐隐约约看到有几朵小乌云,正在缓慢地袭来,给人造成了一种“山雨欲来风满楼”的感觉。
这些萦绕在经典物理学大厦上空的乌云,就是我们今天的主题——“困境”。
1900年的4月,新的百年刚刚开始,各行各业开个大会总结一下过去,展望一下未来还是非常必要的,科学界也不例外。
就在这个月的27号,欧洲各国有头有脸的科学家来到了英国皇家研究所开会,这时的爱因斯坦还在苏黎世联邦理工大学上学,不过他很快就要变成一个无业游民。
这时的波尔还在上高中,估计在操场上正在酣畅淋漓地踢足球。他们两个现在还算不上物理学家,更谈不上是有头有脸的人物。
在科学报告会上,76岁的老爷子开尔文勋爵发表了开篇演讲,按照惯例吹捧了一下现在的物理学多么多么的成功,听得下面的人不由得仰头45°再次膜拜经典物理学,不过,老爷子话锋一转,说,现在有两朵乌云,一朵飘在了热力学大厦,一朵飘在了电动力学大厦,这两朵乌云造成的困境现在还无法解决。
电动力学大厦上的乌云指的是,物质在以太中如何运动?热力学大厦上的乌云指的是,麦克斯韦——玻尔兹曼能量均分定理在实验中遇到的困难。
说人话,第一朵乌云是大家熟知的迈克尔逊——莫雷实验,他们两本来想检测地球在以太中的运动,对干涉仪垂直方向上的光速造成的差异,最后却发现光速没有变化,证明了以太并不存在。
所有的物理学家看到这个结果都有点发懵,这意味着经典电磁学和牛顿力学有不可调和的矛盾。这是经典物理学内部的矛盾,解决这个问题的人,就是现在正在热恋中、即将变成无业游民的爱因斯坦。当然这是相对论的范畴,我们不做过多的讨论。
另外一朵乌云就是大家更为熟知的黑体辐射问题 ,这个问题是1859年的时候,德国海德堡大学的古斯塔夫·基尔霍夫挖的坑,他挖这个坑的时候当时也并不知道黑体辐射问题在经典物理学的框架下没有办法解决,也更不知道这会牵扯出量子力学这门新的学科。
他当时提出这个问题只是基于两点原因,首先在1859年以前,不光是物理学家,包括所有人在内,只要你在冬天生过炉子,都发现过这样一个现象,铁制拨火棍在不同的温度下会发出不同颜色的光,随着温度的升高,颜色从暗红到橙黄到蓝白发生变化。
而且不同材质的物体,在相同的温度下,发出光的颜色一样,这表明物体在热状态下的辐射跟材质没有关系,也跟物体的大小,形状没有关系。
其次是基尔霍夫本人对光谱学还有很深的研究,(光谱学这个问题我后面还会提到,这也算是一朵小乌云),所以基尔霍夫就想搞清楚一个物体的温度,和它在光谱各个频率下辐射强度之间的关系。
基尔霍夫为了研究这个问题,顺便还构想出来一个不反射任何电磁辐射的物体,也就是说,这东西发出的电磁辐射,都是它自身辐射出来的。
由于自然界并不存在不反射电磁辐射的物体,因此基尔霍夫构想出了一个表面开有一个小孔的空心球;
这个空心球外表是一层绝热层,里面涂有吸收电磁辐射的材料,而且非常粗糙,当一束光从空心球的小孔射入以后,就会在球体内经过多次反射被完全吸收,所以这个空心球内部就成了一个完美的黑体,如果利用电加热给空心球内部提供热量,那么从这个小孔跑出来的电磁辐射,就是完美的黑体辐射。
所以基尔霍夫提出的这个问题,就叫黑体辐射问题,也叫空腔辐射问题。
他希望通过研究理想黑体的辐射,搞出一个公式,以后只需要知道一个物体的温度,就能算出这个物体辐射光谱的能量分布,或者是我们现在知道了一个物体辐射光谱的能量分布,就能算出它现在的温度是多少。
说到这里,是不是觉得研究这个问题还是比较实用的,比如说,太阳的温度是多少?我们总不能跑到太阳上去测吧,所以你只要有黑体辐射公式,就能通过它的光谱算出太阳的温度;
比如说,炼钢的时候,钢水的温度往往达到了几千摄氏度,那么你如何去测量钢水的温度?总不能拿个温度计去测吧,铁都变成了液体,啥温度计能抗住这么高的温度?
所以只要有黑体辐射光谱的公式,简单的分析下它的光谱,温度立马就出来了。
再比如说,1880年代的时候,人类进入了电气化时代,最具代表性的就是照明灯具的出现,当时受众面比较广的照明灯具是白炽灯,不过在白炽灯生产的过程中,遇到了这样的问题。
灯丝的温度达到多少最为合适,也就是说,在哪个温度下,白炽灯的光谱峰值会更多地落在可见光的范围内,在这个温度下工作的灯丝,就能减少不必要的红外辐射,或者说减少不必要的热损失。毕竟灯泡是用来照明的,而不是用来取暖的。
当时并没有人知道我们应该造多少瓦的灯泡合适,所以整个行业就没有一个参考标准,想造多少瓦就是多少瓦。
要知道当时造灯泡非常赚钱,其中牵扯到了巨大利益问题,除了像西门子电器公司、西屋电气公司,还有爱迪生电气公司这些大公司之外;
只要有机会有门路的人,都在开小作坊造灯泡,爱因斯坦他爸和叔叔就看到了这个发财的商机,不过他们一直都是小打小闹。
冯·西门子本人更是豪爽地在柏林郊区捐赠了一块土地,1887年德国在这片土地上建立起了帝国理工学院,买最好的实验设备,聘请全国最优秀的科学家,专门就研究测试各种新产品,目的就是要制定行业标准。当然黑体辐射的问题,也成为了这所学院首要解决的问题。
所以到了1890年代,黑体辐射问题就从简单的学术问题,上升到了国家层面的战略问题。从此德国一多半的科学家都一股脑地钻进了对黑体辐射的研究。这也是为什么量子论是从德国开始的。
自从基尔霍夫提出黑体辐射问题,以后的40年间,这个问题一直没有办法解决,原因有两点,虽然基尔霍夫构想出了完美黑体模型,但是当时造不出来;
建立帝国理工学院以后,1890年造出了空腔黑体,但是发现研究黑体辐射问题,可供物理学家使用理论就是经典电磁学和经典热力学,结果发现通过这个两个理论得出了公式;
一个是1896年帝国理工学的维恩,从玻尔兹曼分子热运动理论出发提出了维恩公式,另外一个是1900年英国的瑞丽爵士从电磁辐射的角度出发,采用能量均分定理,说人话就是将能量连续均匀的分配到各个辐射波长上,他也提出了一个公式,这两个公式都不能很好的符合黑体辐射能量分布的曲线。
维恩公式在短波波长符合得很好,但在长波范围总是比实验得出的数据要高,瑞丽的公式刚好相反,在长波范围符合得很好,但随着波长的减小,辐射会趋于无穷大。
这就是开尔文老爷子说的第二朵乌云,能量均分定理在实验中遇到的困难。关于黑体辐射更具体的一些问题,以及如何解决,下个视频,我们着重会再讲一下,毕竟这是量子论的开端。
现在我们说完了两朵乌云,接下来我们再说说,天边的几朵小乌云。
第一朵光电效应问题,光电效应我们知道是爱因斯坦在1905年解决的,但这个问题发现得比较早,1887年赫兹在实验室中寻找电磁波的时候,就发现了光电效应,不过赫兹当时只是观察到了有弧光照射和没有弧光照射感应圆环的时候,火花产生的难易程度不同。他当时也不知道这是咋回事,不过赫兹还是比较实事求是,不知道就是不知道,他在文章里详细地记录了这个现象。后面在讲到爱因斯坦的时候,会详细讲这个问题。毕竟爱因斯坦是量子论的元老级人物。
第二朵乌云是原子的线状光谱问题。前面我们说了基尔霍夫对光谱学也颇有研究,在1850年代的时候,他和本校的另外一位化学家本生,发现了元素的辐射光谱。
在当时那个年代,人们都搞不懂原子到底存不存在,更不知道原子的结构,也不知道元素化学性质的本质原因,所以那个时候的化学并不像现在这样是一门成熟、独立的学科。
当时的化学家总有点炼金术师的感觉,他们每天都在倒腾各种瓶瓶罐罐,把不同的元素混合在一起,看能发生什么反应,然后称一下反应前和反应后的比重,总结一些表象规律。
要不就是把各种元素拿到火下烧一烧,今天烧这个明天烧那个,自从本生改进了煤气灯以后,更是一发不可收拾。经过他改进的煤气灯温度更高,可以达到2300摄氏度,而且火焰很淡没有浓烟,这种煤气灯就叫本生灯。
烧着烧着他就发现这样一种现象,每种元素在火焰下都有它自己特有的颜色,比如钠的颜色就是黄色,钙的颜色就是砖红色,锂的颜色是深红色、钾的颜色是紫色等等;
本生就将这件事告诉了基尔霍夫,基尔霍夫说既然颜色不同,那光谱肯定不同,要不拿个三棱镜试试看,它俩就用三棱镜制作了一个简陋光谱仪,结果发现所有元素的发射光谱都是分立的线条,并不连续,就像条形码一样,而且每种元素的条形码都不一样。
两人立刻就认识到了这个发现的重要性,这不就是元素的身份证吗?他们把已知的元素光谱线都记录了下来,以后只要把一个东西往火里一烧,分析他的光谱,然后对照已经记录的元素光谱,发现其中有钠元素,有氯元素,就知道烧的是氯化钠。
他们用这个发现还解释了困扰人类已久的夫琅和费线,也就是太阳可见光谱中的暗线,其实所有的暗线都对应了特定元素的吸收线。
1859年,他们向德国科学院报告了此事,说已经知道了太阳的组成,当时所有的人都惊呆了,竟然能知道太阳的组成,简直有点不可思议。
从这件事就能看出实验物理学, 已经远远地领先于理论物理学,元素光谱是怎样形成的?为什么是分立线条?为什么每种元素的光谱都不一样?
这就是19世纪困扰人类的原子线状光谱的问题,要想解决这个问题,还得等正在操场上踢足球的波尔大神完成学业。
最后还有元素周期表中元素化学性质,表现出来的周期相似性问题,这也得等波尔大神出马才能解决。
好了,现在我们已经说完了19世纪经典物理学的辉煌以及困境,接下来,我们将正是踏入就量子论,看看旧量子论的三大巨头普朗克、爱因斯坦和波尔,是如何解决经典物理学的困境。
物理学发展史及其重要事件
经典物理学发展史古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。
伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论 。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。
法国在大革命的前后,人才辈出,以P.S.M.拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问 :你把上帝放在什么地位?无神论者拉普拉斯则直率地回答 :我不需要这个假设。
拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上W.R.哈密顿、G.G.斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。正当这学派声势煊赫、如日中天时,受到英国物理学家T.杨和这个学派的后院法兰西科学院及科学界的挑战,J.B.V.傅里叶从热传导方面,T.杨、D.F.J.阿拉戈、A.-J.菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论 ,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。此后,光的波动说及以太论统治了19世纪的后半世纪,著名物理学家如法拉第、麦克斯韦、开尔文等都对以太论坚信不疑。另一方面,利用干涉仪内干涉条纹的移动,可以精确地测定长度、速度、曲率的极微细的变化;利用棱镜和衍射光栅产生的光谱,可以确定地上和天上的物质的成分及原子内部的变化。因此这些光学仪器已成为物理学、分析化学、物理化学和天体物理学中的重要实验手段。
蒸汽机的发明推动了热学的发展 ,18世纪60年代在 J.瓦特改进蒸汽机的同时,他的挚友J.布莱克区分了温度和热量,建立了比热容和潜热概念,发展了量温学和量热学,所形成的热质说和热质守恒概念统治了80多年。在此期间,尽管发现了气体定律,度量了不同物质的比热容和各类潜热 ,但对蒸汽机的改进帮助不大,蒸汽机始终以很低的效率运行。1755年法国科学院坚定地否决了永动机 。1807年T.杨以“能”代替莱布尼兹的“活力” ,1826年 J. V. 彭赛列创造了“功”这个词。1798年和1799年,朗福德和H.戴维分析了摩擦生热,向热质说挑战;J.P.焦耳从 19 世纪 40 年代起到1878年,花了近40年时间,用电热和机械功等各种方法精确地测定了热功当量 ;生理学家 J.R.迈尔和H.von亥姆霍兹 ,更从机械能、电能、化学能、生物能和热的转换,全面地说明能量既不能产生也不会消失,确立了热力学第一定律即能量守恒定律。在此前后,1824年,S.卡诺根据他对蒸汽机效率的调查,据热质说推导出理想热机效率由热源和冷却源的温度确定的定律。文章发表后并未引起注意。后经R.克劳修斯和开尔文分别提出两种表述后,才确认为热力学第二定律。克劳修斯还引入新的态函数熵;以后,焓、亥姆霍兹函数、吉布斯函数 等态函数相继引入 ,开创了物理 化学 中的重要分支——热化学。热力学指明了发明新热机、提高热机效率等的方向,开创了热工学;而且在物理学、化学、机械工程、化学工程 、冶金学等方面也有广泛的指向和推动作用。这些使物理化学开创人之一W.奥斯特瓦尔德曾一度否认原子和分子的存在 ,而宣扬“唯能论”,视能量为世界的最终存在 。但另一方面,J.C.麦克斯韦的分子速度分布率(见麦克斯韦分布)和L.玻耳兹曼的能量均分定理把热学和力学综合起来,并将概率规律引入物理学,用以研究大量分子的运动,创建了气体分子动力论(现称气体动理论),确立了气体的压强、内能、比热容等的统计性质,得到了与热力学协调一致的结论。玻耳兹曼还进一步认为热力学第二定律是统计规律,把熵同状态的概率联系起来,建立了统计热力学。任何实际物理现象都不可避免地涉及能量的转换和热量的传递,热力学定律就成为综合一切物理现象的基本规律。经过20世纪的物理学革命,这些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和无序乃至涨落和混沌等概念,已经从有关的自然科学分支中移植到社会科学中。
在19世纪20年代以前 ,电和磁始终认为 是两种不同的物质,因此,尽管1600年W.吉伯发表《论磁性》,对磁和地磁现象有较深入的分析 ,1747 年B.富兰克林提出电的单流质理论,阐明了正电和负电,但电学和磁学的发展是缓慢,1800年A.伏打发明伏打电堆,人类才有能长期供电的电源 ,电开始用于通信 ;但要使用一个电弧灯 ,就需联接2千个伏打电池,所以电的应用并不普及。1920年H.C.奥斯特的电流磁效应实验,开始了电和磁的综合,电磁学就迅猛发展,几个月内 ,通过实验A.-M.安培建立平行电流间的安培定律 ,并提出磁分子学说 ,J.-B.毕奥和F.萨伐尔建立载流导线对磁极的作用力(后称毕-萨-拉定律),阿拉戈发明电磁铁并发现磁阻尼效应,这些成就奠定了电磁学的基础。1831年M.法拉第发现电磁感应现象,磁的变化在闭合回路中产生了电流,完成了电和磁的综合,并使人类获得新的电源。1867年W.von 西门子发明自激发电机 ,又用变压器完成长距离输电,这些基于电磁感应的设备,改变了世界面貌,创建了新的学科——电工学和电机工程。法拉第还把场的概念引入电磁学;1864年麦克斯韦进一步把场的概念数学化,提出位移电流和有旋电场等假设,建立了麦克斯韦方程组,完善了电磁理论,并预言了存在以光速传播的电磁波。但他的成就并没有即时被理解,直到H.R.赫兹完成这组方程的微分形式,并用实验证明麦克斯韦预言的电磁波,具有光波的传播速度和反射 、折射干涉、衍射、偏振等一切性质,从而完成了电磁学和光学的综合,并使人类掌握了最快速的传递各种信息的工具 ,开创了电子学这门新学科。
直到19世纪后半叶 ,电荷的本质是什么 ,仍没有搞清楚,盛极一时的以太论,认为电荷不过是以太海洋中的涡元。H.A.洛伦兹首先把光的电磁理论与物质的分子论结合起来 ,认为分子是带电的谐振子 ,1892年起 ,他陆续发表“电子论”的文章 ,认为1859年 J.普吕克尔发现的阴极射线就是电子束;1895年提出洛伦兹力公式,它和麦克斯韦方程相结合,构成了经典电动力学的基础;并用电子论解释了正常色散、反常色散(见光的色散)和塞曼效应。1897年J.J.汤姆孙对不同稀薄气体、不同材料电极制成的阴极射线管施加电场和磁场,精确测定构成阴极射线的粒子有同一的荷质比 ,为电子论提供了确切的实验根据。电子就成了最先发现的亚原子粒子 。1895年W.K.伦琴发现X射线,延伸了电磁波谱 ,它对物质的强穿透力,使它很快就成为诊断疾病和发现金属内部缺陷的工具 。1896年A.-H.贝可勒尔发现铀的放射性 ,1898年居里夫妇发现了放射性更强的新元素——钋和镭,但这些发现一时尚未引起物理学界的广泛注意
20世纪的物理学 到19世纪末期 ,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙 - 莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。
1905 年 A. 爱因斯坦为了解决电动力学应用于动体的不对称(后称为电动力学与伽利略相对性原理的不协调),创建了狭义相对论,即适用于一切惯性参考系的相对论。他从真空光速不变性出发,即在一切惯性系中,运动光源所射出的光的速度都是同一值,推出了同时的相对性和动系中尺缩 、钟慢的结论 ,完满地解释了洛伦兹为说明迈克耳孙 -莫雷实验提出的洛伦兹变换公式,从而完成了力学和电动力学的综合。另一方面,狭义相对论还否定了绝对的空间和时间,把时间和空间结合起来,提出统一的相对的时空观构成了四度时空;并彻底否定以太的存在,从根本上动摇了经典力学和经典电磁学的哲学基础,而把伽利略的相对性原理提高到新的阶段,适用于一切动体的力学和电磁学现象。但在动体或动系的速度远小于光速时,相对论力学就和经典力学相一致了。经典力学中的质量、能量和动量在相对论中也有新的定义,所导出的质能关系为核能的释放和利用提供了理论准备。1915年,爱因斯坦又创建广义相对论,把相对论推广到非惯性系,认为引力场同具有相当加速度的非惯性系在物理上是完全等价的,而且在引力场中时空是弯曲的,其曲率取决于引力场的强度,革新了宇宙空间都是平直的欧几里得空间的旧概念。但对于范围和强度都不很大的引力场如地球引力场,可以完全不考虑空间的曲率,而对引力场较强的空间如太阳等恒星的周围和范围很大的空间如整个可观测的宇宙空间 ,就必须考虑空间曲率。因此广义相对论解释了用牛顿引力理论不能解释的一些天文现象,如水星近日点反常进动、光线的引力偏析等。以广义相对论为基础的宇宙学已成为天文学的发展最快的一个分支。
另一方面 ,1900年 M.普朗克提出了符合全波长范围的黑体辐射公式,并用能量量子化假设从理论上导出,首次提出物理量的不连续性。1905年爱因斯坦发表光量子假设,以光的波粒二象性,解释了光电效应;1906年又发表固体热容的量子理论;1913年N.玻尔(见玻尔父子)发表玻尔氢原子理论,用量子概念准确地地计算出氢原子光谱的巴耳末公式,并预言氢原子存在其他线光谱,后获证实。1918年玻尔又提出对应原理,建立了经典理论通向量子理论的桥梁;1924年L.V.德布罗意提出微观粒子具有波粒二象性的假设,预言电子束的衍射作用;1925年W.泡利发表泡利不相容原理,W.K.海森伯在M.玻恩和数学家E.P.约旦的帮助下创立矩阵力学 ,P.A.M.狄拉克提出非对易代数理论 ;1926 年
E.薛定谔根据波粒二象性发表波动力学的一系列论文,建立了波函数,并证明波动力学和矩阵力学是等价的,遂即统称为量子力学 。同年6月玻恩提出了波函数的统计解释 ,表明单个粒子所遵循的是统计性规律而非经典的确定性规律;1927年海森伯发表不确定性关系;1928年发表相对论电子波动方程,奠定了相对论性量子理论的基础。由于一切微观粒子的运动都遵循量子力学规律,因此它成了研究粒子物理学、原子核物理学、原子物理学、分子物理学和固体物理学的理论基础,也是研究分子结构的重要手段,从而发展了量子化学这个化学新分支。
差不多同时,研究由大量粒子组成的粒子系统的量子统计法也发展起来了 ,包括1924年建立的玻色-爱因斯坦分布和1926年建立的费米-狄拉克分布 ,它们分别适应于自旋为整数和半整数的粒子系统。稍后,量子场论也逐渐发展起来了 。1927年 ,狄拉克首先提出将电磁场作为一个具有无穷维自由度的系统进行量子化的方案,以处理原子中光的自发辐射和吸收问题。1929年海森伯和泡利建立了量子场论的普遍形式,奠定了量子电动力学的基础。通过重正化解决了发散困难,并计算各阶的辐射修正,所得的电子磁矩数值与实验值只相差2.5×10-10 ,其准确度在物理学中是空前的 。量子场论还正向统一场论的方向发展,即把电磁相互作用、弱相互作用、强相互作用和引力相互作用统一在一个规范理论中,已取得若干成就的有电弱统一理论、量子色动力学和大统一理论等。
“实践是真理的唯一标准”,物理学也同样遵循这一标准。一切假说都必须以实验为基础,必须经受住实验的验证。但物理学也是思辨性很强的科学,从诞生之日起就和哲学建立了不解之缘。无论是伽利略的相对性原理、牛顿运动定律、动量和能量守恒定律 、麦克斯韦方程乃至相对论、量子力学,无不带有强烈的、科学的思辨性。有些科学家例如在19世纪中主编《物理学与化学》杂志的J.C.波根多夫曾经想把思辨性逐出物理学,先后两次以具有思辨性内容为由,拒绝刊登迈尔和亥姆霍兹的论能量守恒的文章,终为后世所诟病。要发现隐藏在实验事实后面的规律,需要深刻的洞察力和丰富的想像力。多少物理学家关注θ-τ之谜 ,唯有华裔美国物理学家李政道和杨振宁,经过缜密的思辨,检查大量文献,发现谜后隐藏着未经实验鉴定的弱相互作用的宇称守恒的假设。而从物理学发展史来看,每一次大综合都促使物理学本身和有关学科的很大发展,而每一次综合既以建立在大量精确的观察、实验事实为基础,也有深刻的思辨内容。因此一般的物理工作者和物理教师,为了更好地应用和传授物理知识,也应从物理学的整个体系出发,理解其中的重要概念和规律。
应用 物理学是广泛应用于生产各部门的一门科学 ,有人曾经说过,优秀的工程师应是一位好物理学家。物理学某些方面的发展,确实是由生产和生活的需要推动的。在前几个世纪中,卡诺因提高蒸汽机的效率而发现热力学第二定律,阿贝为了改进显微镜而建立光学系统理论,开尔文为了更有效地使用大西洋电缆发明了许多灵敏电学仪器;在20世纪内,核物理学、电子学和半导体物理、等离子体物理乃至超声学、水声学、建筑声学、噪声研究等的迅速发展,显然和生产 、生活的需要有关。因此,大力开展应用物理学的研究是十分必要的。另一方面,许多推动社会进步,大大促进生产的物理学成就却肇始于基本理论的探求,例如:法拉第从电的磁效应得到启发而研究磁的电效应,促进电的时代的诞生;麦克斯韦为了完善电磁场理论,预言了电磁波,带来了电子学世纪;X射线、放射性乃至电子 、中子的发现 ,都来自对物质的基本结构的研究。从重视知识、重视人才考虑,尤应注重基础理论的研究。因此为使科学技术达到世界前列,基础理论研究是绝不能忽视的。
展望 21世纪的前夕 ,科学家将从本学科出发考虑百年前景。物理学是否将如前两三个世纪那样,处于领先地位,会有一番争议,但不会再有一位科学家像开尔文那样,断言物理学已接近发展的终端了。能源和矿藏的日渐匮乏,环境的日渐恶化,向物理学提出解决新能源、新的材料加工、新的测试手段的物理原理和技术。对粒子的深层次探索,解决物质的最基本的结构和相互作用,将为人类提供新的认识和改造世界的手段,这需要有新的粒子加速原理,更高能量的加速器和更灵敏、更可靠的探测器。实现受控热核聚变,需要综合等离子体物理、激光物理、超导物理、表面物理、中子物理等方面知识,以解决有关的一系列理论技术问题。总之,随着新的技术革命的深入发展,物理学也将无限延伸。
文章评论